https://www.selleckchem.com/products/ru-521.html Metasurface with thin planar resonant elements offers great capability in manipulating electromagnetic waves and their interaction with semiconductors. Split-ring resonator (SRR), as the basic building block, has been extensively investigated for myriad applications owing to its multiple electric and magnetic resonant modes. In this work, we report a rotated fourfold U-shape SRR metasurface for polarization-insensitive strong enhancement of mid-infrared photodetection. The integrated photodetector consists of a rotated fourfold SRR array and an InAsSb based heterojunction photodiode. A photosensitivity enhancement factor as high as 11 has been achieved by adoption of superimposed high order magnetic and electric resonant modes in the SRR metasurface. This work provides a promising pathway for exploring high performance polarization-insensitive photodetection in different electromagnetic wave ranges.Rapid progress in real-time spectroscopy uncovers the spatio-spectral scenarios of ultrashort pulses in dissipative systems. Varieties of transient soliton dynamics on different timescales have been revealed. Here, we report on an experimental observation of stationary and pulsating vector dissipative solitons in a nonlinear multimode interference (NL-MMI) based fiber laser with net normal dispersion. Polarization non-discrimination of the NL-MMI mode-locking facilitates the dissipative soliton trapping process. Two orthogonally polarized components are coupled together through oppositely shifting their central frequencies to form the group-velocity-locked vector dissipative solitons (GVLVDSs). Dispersive Fourier transform (DFT) based polarization resolved measurement enables insights into the transient polarization dynamics and the long-term evolution. Particularly, both stationary and pulsating GVLVDSs are obtained with appropriate parameter settings. It is found that the quasi-stationary pulsating manner is accompanied w