https://www.selleckchem.com/products/LY294002.html e., plasma levels at 60 min post-stressor) across the peripubertal stress period. In addition, peripubertal stress led to changes in emotional and glucocorticoid reactivity to novelty exposure, as well as in the expression levels of the plasticity molecule PSA-NCAM in the hippocampus. Importantly, by assessing the same endpoints in another peripubertally stressed cohort tested during adolescence, we show that the observed effects at adulthood are the result of a delayed programming manifested at adulthood and not protracted effects of stress. Altogether, our results support the view that the degree of stress-induced adaptation of the hypothalamus-pituitary-adrenal axis responsiveness at the important transitional period of puberty relates to the long-term programming of cognition, behavior and endocrine reactivity.Maternal exposure to stress during pregnancy is associated with an increased risk of psychiatric disorders in the offspring in later life. The mechanisms through which the effects of maternal stress are transmitted to the fetus are unclear, however the placenta, as the interface between mother and fetus, is likely to play a key role. Using a rat model, we investigated a role for placental oxidative stress in conveying the effects of maternal social stress to the fetus and the potential for treatment using a nanoparticle-bound antioxidant to prevent adverse outcomes in the offspring. Maternal psychosocial stress increased circulating corticosterone in the mother, but not in the fetuses. Maternal stress also induced oxidative stress in the placenta, but not in the fetal brain. Blocking oxidative stress using an antioxidant prevented the prenatal stress-induced anxiety phenotype in the male offspring, and prevented sex-specific neurobiological changes, specifically a reduction in dendrite lengths in the hippocampus, as well as reductions in the number of parvalbumin-positive neurons and GABA receptor subunits