https://www.selleckchem.com/HSP-90.html Uncertainty about future events may lead to worry, anxiety, even inability to function. The highly related concept-intolerance of uncertainty (IU)-emerged in the early 1990s, which is further developed into a transdiagnostic risk factor in multiple forms of anxiety disorders. Interests in uncertainty and intolerance of uncertainty have rapidly increased in recent years; little is known about the construct and phenomenology of uncertainty and IU and the association between them. In an attempt to reveal the nature of two concepts, we reviewed broad literature surrounding uncertainty and intolerance of uncertainty (IU). We followed the process in which the whole IU theory developed and extended, including two aspects (1) from uncertainty to intolerance of uncertainty and (2) definition of uncertainty and intolerance of uncertainty, and further concluded uncertainty fuels to negative emotions, biased expectancy, and inflexible response. Secondly, this paper summarized the experimental research concerning uncertainty and IU, consisted of three parts (1) uncertainty-based research, (2) measurements of IU, and (3) domain-specific IU. Lastly, we pointed out what remains unknown and needed to be investigated in future research. This result provides a comprehensive overview in this domain, enhancing our understanding of uncertainty and IU and contributing to further theoretical and empirical explorations.Astrocytes play a crucial role in neuronal firing activity. Their abnormal state may lead to the pathological transition of neuronal firing patterns and even induce seizures. However, there is still little evidence explaining how the astrocyte network modulates seizures caused by structural abnormalities, such as gliosis. To explore the role of gliosis of the astrocyte network in epileptic seizures, we first established a direct astrocyte feedback neuronal network model on the basis of the hippocampal CA3 neuron-astrocyte model to simul