https://www.selleckchem.com/products/bicuculline.html operties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.Glutamate-induced neurotoxicity is one of the most important pathogenic mechanisms in neurological diseases and is widely used as an in vitro model for ischemic stroke. Senkyunolide I (SEI), an active constituent derived from traditional Chinese medicine Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has been shown to have beneficial effects against focal cerebral ischemia-reperfusion in rats. However, the mechanisms underlying SEI-mediated neuroprotection remain not well understood. Thus, we explored the influence of SEI in glutamate-mediated injury to mouse neuroblastoma (Neuro2a) cells and determined the mechanisms involved. Neuro2a cells were treated