https://www.selleckchem.com/products/17-AAG(Geldanamycin).html Subsets of breast tumors present major clinical challenges, including triple-negative, metastatic/recurrent disease and rare histologies. Here, we developed 37 patient-derived xenografts (PDX) from these difficult-to-treat cancers to interrogate their molecular composition and functional biology. Whole-genome and transcriptome sequencing and reverse-phase protein arrays revealed that PDXs conserve the molecular landscape of their corresponding patient tumors. Metastatic potential varied between PDXs, where low-penetrance lung micrometastases were most common, though a subset of models displayed high rates of dissemination in organotropic or diffuse patterns consistent with what was observed clinically. Chemosensitivity profiling was performed in vivo with standard-of-care agents, where multi-drug chemoresistance was retained upon xenotransplantation. Consolidating chemogenomic data identified actionable features in the majority of PDXs, and marked regressions were observed in a subset that was evaluated in vivo. Together, this clinically-annotated PDX library with comprehensive molecular and phenotypic profiling serves as a resource for preclinical studies on difficult-to-treat breast tumors.The maximum infiltration depth and soil water supply must be evaluated in order to estimate the soil water resource use limit by plants and soil water carrying capacity for vegetation, and realize the sustainable use of soil water resources. However, there is no non-destructive method to estimate maximum infiltration depth and soil water supply. We conducted a simulated infiltration experiment and a long-term fixed-position investigation in situ in artificial Caragana shrubland at the Guyuan Eco-experimental Station in the semiarid Loess Plateau. The results showed that infiltration depth for one rain event was equal to the distance from the surface to the crossover point between the two soil water distribution curve