https://www.selleckchem.com/products/curzerene.html The surface reconstruction of oxygen evolution reaction (OER) catalysts has been proven favorable for enhancing its catalytic activity. However, what is the active site and how to promote the active species generation remain unclear and are still under debate. Here, the in situ synthesis of CoNi incorporated Fe3 N nanotubes (CoNi-Fe3 N) on the iron foil through the anodization/electrodeposition/nitridation process for use of boosted OER catalysis is reported. The synergistic CoNi doping induces the lattice expansion and up shifts the d-band center of Fe3 N, which enhances the adsorption of hydroxyl groups from electrolyte during the OER catalysis, facilitating the generation of active CoNi-FeOOH on the Fe3 N nanotube surface. As a result of this OER-conditioned surface reconstruction, the optimized catalyst requires an overpotential of only 285 mV at a current density of 10 mA cm-2 with a Tafel slope of 34 mV dec-1 , outperforming commercial RuO2 catalysts. Density functional theory (DFT) calculations further reveal that the Ni site in CoNi-FeOOH modulates the adsorption of OER intermediates and delivers a lower overpotential than those from Fe and Co sites, serving as the optimal active site for excellent OER performance. To investigate total and central obesity in ankylosing spondylitis (AS), and assess the association with inflammation, disease severity and cardiovascular risk factors. There were 105 AS patients enrolled. Anthropometry was measured to determine total (body mass index [BMI]) and central obesity (waist circumference [WC], waist-to-height ratio [WHtR]). We evaluated patients' disease activity, functional ability, global assessment, physical mobility, radiographic damage and health index. Erythrocyte sedimentation rate, C-reactive protein (CRP) and blood biochemistry profile were tested. Retrospective radiographic change was assessed in 39 patients. Presence of diabetes and hypertension were examine