The mTOR signaling pathway is abnormally activated in pancreatic cancer and is related to tumor glucose metabolism. However, its specific regulation mechanism is still unclear. Therefore, this study aims to investigate whether Sestrin2 affects the glucose metabolism of pancreatic cancer by modulating mTOR signal and then affects its biological behavior. We have observed that l-leucine can promote the proliferation of pancreatic cancer cells and increase the expression of Sestrin2 and p-mTOR proteins. In order to further study the role of Sestrin2 and mTOR signaling in pancreatic cancer, we conducted Sestrin2 overexpression and mTOR pharmacological inhibition experiments. We found that Sestrin2 overexpression can increase glycolysis of pancreatic cancer cells and promote their proliferation. This effect can be eliminated by mTOR inhibitors. Finally, we found that Sestrin2 knockdown could inhibit the growth of pancreatic cancer in vivo. In conclusion, these findings suggest that Sestrin2 may promote the occurrence and development of pancreatic cancer through mTOR signaling.At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, lll as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.Salvianolic acid B (Sal B) is one of the main active ingredients of Salvia miltiorrhiza, with strong antioxidant effects. Recent findings have shown that Sal B has anti-inflammatory, anti-apoptotic, anti-fibrotic effects and can promote stem cell proliferation and differentiation, and has a beneficial effect on cardiovascular and cerebrovascular diseases, aging, and liver fibrosis. Reactive oxygen species (ROS) include oxygen free radicals and oxygen-containing non-free radicals. ROS can regulate cell proliferation, survival, death and differentiation to regulate inflammation, and immunity, while Sal B can scavenge oxygen free radicals by providing hydrogen atoms and reduce the production of oxygen free radicals and oxygen-containing non-radicals by regulating the expression of antioxidant enzymes. The many pharmacological effects of Sal B may be closely related to its elimination and inhibition of ROS generation, and Nuclear factor E2-related factor 2/Kelch-like ECH-related protein 1 may be the core link in its regulation of the expression of antioxidant enzyme to exert its antioxidant effect. What is confusing and interesting is that Sal B exhibits the opposite mechanisms in tumors. To clarify the specific target of Sal B and the correlation between its regulation of oxidative stress and energy metabolism homeostasis will help to further understand its role in different pathological conditions, and provide a scientific basis for its further clinical application and new drug development. Although Sal B has broad prospects in clinical application due to its extensive pharmacological effects, the low bioavailability is a serious obstacle to further improving its efficacy in vivo and promoting clinical application. Therefore, how to improve the availability of Sal B in vivo requires the joint efforts of many interdisciplinary subjects.The Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 has been rapidly spreading globally and has caused worldwide social and economic disruption. https://www.selleckchem.com/products/brd-6929.html Currently, no specific antiviral drugs or clinically effective vaccines are available to prevent and treat COVID-19. Traditional Chinese medicine (TCM) can facilitate syndrome differentiation and treatment according to the clinical manifestations of patients and has demonstrated effectiveness in epidemic prevention and control. In China, TCM intervention has helped to control the epidemic; however, TCM has not been fully recognized worldwide. In this review, we summarize the epidemiology and etiological characteristics of severe acute respiratory syndrome coronavirus 2 and the prevention and treatment measures of COVID-19. Additionally, we describe the application of TCM in the treatment of COVID-19 and the identification of small molecules of TCM that demonstrate anti-coronavirus activity. We also analyze the current problems associated with the recognition of TCM. We hope that, through the contribution of TCM, combined with modern technological research and the support of our international counterparts, COVID-19 can be effectively controlled and treated.Radix Astragali (RA), the root of Astragalus membranaceus var. mongholicus (Bunge) P.K. Hsiao, known as "Huangqi" in Chinese, has been used as a traditional herbal medicine or food in China for more than 2,000 years and is now consumed globally. Unfortunately, the increasing demand for RA has led to the overexploitation of its wild stock, as well as quality problems, including adulteration and contamination. Therefore, the sustainable cultivation of RA is urgently needed. In the present research, semi-structured interviews and key informant interviews were conducted, over a 2-year period, to collect data from stakeholders in the main production areas; moreover, a targeted chemical analysis-based quality assessment strategy was applied to understand the quality of RA. Accordingly, 10 different types of value chains (VCs) were identified in RA production; meanwhile, the contents of the main active ingredients (astragaloside and calycosin-7-O-β-D-glucoside) were analyzed by HPLC-ELSD-UV and the yield of medicinal material was demined and further analyzed using k-means clustering analysis.