Assessing breathlessness in response to an acute exercise provocation overcomes some limitations of daily life assessment, such as recall bias and lack of standardized exertional stimulus. To assess the severity of breathlessness in response to an acute exercise provocation, unidimensional or multidimensional instruments are available. Borg's 0-10 category rating scale is the most widely used instrument and has estimates for a MCID during exercise. When assessing the severity of breathlessness during exercise, measures should be taken at a standardized submaximal point, whether during laboratory-based tests like cardiopulmonary exercise testing or field-based tests, such as the 3-min constant rate stair stepping or shuttle walking tests. Recommendations are provided around which instruments to use for breathlessness assessment in daily life and in relation to exertion in people with COPD. Older adults with chronic obstructive pulmonary disease (COPD) have a high risk and rate of falls. Home-based fall prevention exercise programs reduce falls in older adults and may be an alternative approach for people with COPD without access to hospital-based rehabilitation. Therefore, we aimed to determine the feasibility of a home-based fall prevention exercise program in older adults with COPD and to examine the effect of the program on fall-related outcomes at baseline, 3 and 6 months. Adults ≥60 years with COPD at risk for falls participated in a single group study. The intervention was a 6-month home-based fall prevention program which included 40 minutes of independent exercise three times per week, four physiotherapist home visits, bimonthly phone calls, and an optional booster session post-exacerbation. An independent assessor collected outcome measures at home at baseline, 3- and 6-months. Primary feasibility criteria were recruitment and retention rates (≥70%) and exercise adherence (≥60%). Ffied feasibility criteria (exercise adherence), and improved balance-related measures of fall risk in older adults with COPD. Our findings highlight important opportunities for refinement of the study design prior to undertaking a full-scale trial. This real world study evaluated the effectiveness of switching to closed triple therapy from mono/dual combination or open triple therapy in patients with chronic obstructive pulmonary disease (COPD). We conducted this retrospective study at a single medical center from December 2014 to September 2020. Patients with COPD who were stepped up to triple therapy were enrolled. We analyzed the duration from initial COPD management to open or closed triple therapy and identified the clinical predictors of the patients who needed triple therapy early. We also evaluated the effectiveness of triple therapy after switching from initial management, and closed triple therapy after switching from open triple therapy. A total 115 COPD patients who were stepped up to triple therapy from initial treatment were analyzed. The duration from initial treatment to triple therapy was 22.4 months. The baseline peripheral blood eosinophil counts of the patients who switched to triple therapy early (n=63, less than 22 months) ania, older age, more AEs in the previous year, ACO, and initial dual bronchodilator therapy were stepped up to triple therapy early. Triple therapy showed improvements in lung function of most patients switching from mono bronchodilator therapy. After switching to closed triple therapy further reduced the incidence of AEs. Exacerbations of COPD (ECOPD) are a frequent cause of hospitalization that seemed to ameliorate during the COVID outbreak. We aimed to evaluate the clinical characteristics of COPD-related hospital admissions and mortality in relation to the presence of COVID-19. We conducted a case-control study of patients admitted in four teaching hospitals throughout Spain between March 15 and April 30, 2020. Hospital admissions of respiratory cause with and without PCR-proven SARS-CoV-2 infection in patients with COPD were evaluated. Baseline and episode-related clinical characteristics were analyzed. Logistic regression analysis was performed to evaluate the risk for mortality. During the study period, 2101 patients were admitted for respiratory worsening, 1200 (57.1%) with COVID-19. A total of 228 (10.8%) were admitted due to COPD worsening, of whom 52 (22.8%) tested positive for COVID-19. COPD patients with COVID-19, when compared to those without COVID-19, were more frequently males with better lung function (FEV postbronchodilator 71% vs 46% respectively, <0.001) and had higher mortality (44.9% vs 13.6% respectively, <0.001) despite similar age, comorbidities, total days of hospitalization and admission to intensive care unit. COVID-19 and eosinopenia were the strongest risk factors for mortality in the multivariate analysis in the overall COPD population. Inhaled corticosteroid use was not associated to mortality. Hospitalizations for ECOPD without COVID-19 were more frequent than COPD with COVID-19 during the first outbreak, but the latter were associated with higher mortality and low eosinophil counts that warrant further analysis. Hospitalizations for ECOPD without COVID-19 were more frequent than COPD with COVID-19 during the first outbreak, but the latter were associated with higher mortality and low eosinophil counts that warrant further analysis. The identification of blood biomarkers to diagnose acute exacerbation of chronic obstructive pulmonary disease (AECOPD) will have clinical utility. Here, we used a proteomics-based approach to identify biomarkers capable of identifying AECOPD. This prospective, single-center pilot study enrolled 12 patients who came to Asan Medical Center (South Korea) via the outpatient clinic or emergency department with symptoms of AECOPD and were follow-up in the outpatient clinic during convalescence between 2015 and 2017. https://www.selleckchem.com/products/grl0617.html Paired blood samples collected from each patient during the treatment naïve AECOPD and convalescence stages were analyzed. A sequential window acquisition of all theoretical fragmentation spectra-mass spectrometry (SWATH-MS)-based proteome analysis was performed and a subset of the data were verified by ELISA. The SWATH-MS analysis identified 226 plasma proteins across all samples examined. The median coefficient of variation for triplicate technical replicates of each sample was 1.13 ± 1.38%, indicating high precision of the technique.