https://www.selleckchem.com/products/iu1.html .This study investigated the influence of salinity on pollutant removal and bacterial community within a partially saturated vertical flow constructed wetland (PS-VFCW). High removal rates of NH4+-N (88.29 ± 4.97-100 ± 0%), total inorganic nitrogen (TIN) (50.00 ± 7.21-62.81 ± 7.21%) and COD (91.08 ± 2.66-100 ± 0%) were achieved at 0.4-2.4% salinity levels. The removal of ammonia, TIN and organic matter occurred mainly in unsaturated zone. Salt-adaptable microbes became the dominant bacteria with salinity elevated. The proportion of ammonia-oxidizing bacteria (AOB) in the 0-5 cm depth layer (unsaturated zone) decreased obviously as the salinity increased to 2.4%. Nitrite-oxidizing bacteria (NOB) in the 0-5 cm depth layer showed a decreasing trend with elevated salinity. Denitrifying bacteria (DNB) in the 0-5 cm depth layer maintained high abundance (27.70-53.60%) at 0.4-2.4% salinity levels. At 2.4% salinity, AOB, NOB and DNB were observed in the unsaturated zones and saturated zones, and showed higher abundance in the unsaturated zone.The presence of (nano)microplastics in domestic wastewater and their subsequent release to the aquatic environment via the discharge of treated sewage has raised significant concerns. Previous studies have also identified their excessive accumulation in sewage sludge. Anaerobic digestion is one of the most used sludge stabilization methods in wastewater treatment plants. Therefore, understanding the potential effects of (nano)microplastics on anaerobic digestion has been receiving increasing attention from researchers. This article provides a comprehensive review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Notably, this review covers mechanisms of inhibition/enhancement of anaerobic digestion by (nano)microplastics and their potential impacts on biochemical pathways, key enzymes, functional genes, and microbial communities investigated to date. Moreov