https://www.selleckchem.com/products/PTC124.html In the title compound, C16H14Cl2FN3, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short Cl⋯H contact, C-Cl⋯π and van der Waals inter-actions. The Hirshfeld surface analysis and two-dimensional fingerprint plots show that H⋯H (33.3%), Cl⋯H/H⋯Cl (22.9%) and C⋯H/H⋯C (15.5%) inter-actions are the most important contributors towards the crystal packing.The title compound, C14H16, exhibits exceptionally weak inter-molecular C-H⋯π hydrogen bonding of the ethynyl groups, with the corresponding H⋯π separations [2.91 (2) and 3.12 (2) Å] exceeding normal vdW distances. This bonding complements distal contacts of the CH (aliphatic)⋯π type [H⋯π = 3.12 (2)-3.14 (2) Å] to sustain supra-molecular layers. Hirshfeld surface analysis of the title compound suggests a relatively limited significance of the C⋯H/H⋯C contacts to the crystal packing (24.6%) and a major contribution from H⋯H contacts accounting 74.9% to the entire surface.The cationic complex in the title compound, [Ir(C9H7N2)2(C12H8N2)]PF6, comprises two phenyl-pyrazole (ppz) cyclo-metallating ligands and one 1,10-phenanthroline (phen) ancillary ligand. The asymmetric unit consists of one [Ir(ppz)2(phen)]+ cation and one [PF6]- counter-ion. The central IrIII ion is six-coordinated by two N atoms and two C atoms from the two ppz ligands as well as by two N atoms from the phen ligand within a distorted octa-hedral C2N4 coordination set. In the crystal structure, the [Ir(ppz)2(phen)]+ cations and PF6 - counter-ions are connected with each other through weak inter-molecular C-H⋯F hydrogen bonds. Additional C-H⋯π inter-actions between the rings of neighbouring cations consolidate the three-dimensional network. Electron density associated with additional disordered solvent mol-ecules inside cavities of the structure was removed with the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The given chemica