https://www.selleckchem.com/products/Nolvadex.html Metro and data center networks are growing rapidly, while global fixed Internet traffic growth shows evidence of slowing. An analysis of the distribution of network capacity versus distance reveals capacity gaps in networks important to wireless backhaul networks and cloud computing. These networks are built from layers of electronic aggregation switches. Photonic integration and software-defined networking control are identified as key enabling technologies for the use of optical switching in these applications. Advances in optical switching for data center and metro networks in the CIAN engineering research center are reviewed and examined as potential directions for optical communication system evolution.Based on our results of the James Webb Space Telescope (JWST) center-of-curvature tests where we were able to measure dynamic amplitudes of Zernike terms to the order of a few picometers, we have applied the same approach to determine if it is possible to measure the accuracy of higher-order Zernike terms as a function of time rather than frequency, i.e., static measurements in place of measuring the amplitude of frequency components. We have applied this approach to data taken for the JWST backplane structure test article (BSTA) in 2006 and find that we can measure effects at the sub-nanometer level, as small as 50 pm for Zernike terms over 30. We conclude that these results show it will be possible to use these techniques to ensure that the optics and support structure for large space telescopes can meet the necessary stability requirements for detecting spectral signatures of life on Earth-like extra-solar planets.This focus issue presents a snapshot of some of the research at the Wyant College of Optical Sciences at the University of Arizona in Tucson, Arizona. While formally the research areas in the College are in the optical engineering, optical physics, photonics, and image science fields, the papers in t