https://www.selleckchem.com/products/iacs-010759-iacs-10759.html The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide. Burkholderia pseudomallei is an environmental gram-negative bacterium that causes the disease melioidosis and is endemic in many countries of the Asia-Pacific region. In Australia, the mortality rate remains high at approximately 10%, despite curative antibiotic treatment being available. The bacterium is almost exclusively found in the endemic region, which spans the tropical Northern Territory and North Queensland, with clusters occasionally present in more temperate climates. Despite being endemic to North Queensland, these infections remain understudied compared to those of the Northern Territory. This study aimed to assess the prevalence of central nervous system (CNS) disease associated variant bimABm, identify circulating antimicrobial resistance mutations and genetically distinct strains from Queensland, via comparative genomics. From 76 clinical isolates, we identified the bimABm variant in 20 (26.3%) isolates and in 9 (45%) of the isolates with documented CNS infection (n = 18). Explorative analapeutic target. Several countries have started mass vaccination programs to halt the spread of the COVID-19 pandemic. With a