https://www.selleckchem.com/products/azd9291.html The correlation of the structural characteristics, that is, the molecular arrangement at the interfaces, with their absorption and photoluminescence excitation spectra is consistent with exciton transfer from pentacene to the CT exciton state only, whereas no transfer of excitons from the perfluoropentacene is detected. Electronic structure calculations of the model systems and investigation of coupling matrix elements between the various electronic states involved suggest hampered exciton diffusion toward the internal interface in the perfluoropentacene films. The asymmetric energy landscape around an idealized internal donor-acceptor interface thus is identified as a reason for asymmetric energy transfer. Thus, long-range effects apparently can influence charge separation in crystalline molecular heterostructures, similar to band gap bowing, which is well established for inorganic pn-junctions.Two-dimensional (2D) hybrid perovskites of Ruddlesden-Popper (RP) lattices are recently booming as a vigorous class of ferroelectrics, whereas their intrinsic van der Waals gaps exert weak interactions that destabilize the layered motifs. Thus, it is an urgent challenge to reduce interlayered energy gaps to allow an exploration of stable RP ferroelectrics. Here, we propose hydrogen bonds to reduce van der Waals gaps of 2D RP-type perovskites while the ferroelectricity is retained. For the first time, a homoconformational trans isomer has been alloyed as the spacing cation of the 2D ferroelectric (t-ACH)2(EA)2Pb3Br10 (1, where t-ACH is 4-aminomethyl-1-cyclohexanecarboxylate and EA is ethylammonium). Strikingly, the strong O-H···O hydrogen bonds link adjacent spacing sheets to build a quasi-RP motif with a lower energy gap. In terms of ferroelectricity, the mixed-cation alloying has a crucial role in spontaneous polarization (Ps), as verified by structure analyses, quadratic optical nonlinearity, and electric hysteresis loops.