https://www.selleckchem.com/products/msu-42011.html We measure the third-order nonlinear optical response of various dielectrics and semiconductors using the spectrally resolved two-beam coupling method at 2.3 µm, 3.5 µm, 4.5 µm, and 8.3 µm. These materials include fused silica, sapphire, calcium fluoride, magnesium fluoride, zinc sulphide, and zinc selenide. We compare our results with previous literature results and theoretically expected values using two-band model theory. The dispersion of the nonlinear refractive index n2 over this wavelength range is found to be negligible.We report an octave-spanning coherent supercontinuum (SC) fiber laser with excellent noise and polarization properties. This was achieved by pumping a highly birefringent all-normal dispersion photonic crystal fiber with a compact high-power ytterbium femtosecond laser at 1049 nm. This system generates an ultra-flat SC spectrum from 670 to 1390 nm with a power spectral density higher than 0.4 mW/nm and a polarization extinction ratio of 17 dB across the entire bandwidth. An average pulse-to-pulse relative intensity noise down to 0.54% from 700 to 1100 nm was measured and found to be in good agreement with numerical simulations. This highly stable broadband source could find strong potential applications in biomedical imaging and spectroscopy where an improved signal-to-noise ratio is essential.Fiber gratings are among key components in fiber-based photonics systems and, particularly, laser cavities. In the latter, they can play multiple roles, such as those of mirrors, polarizers, filters, or dispersion compensators. In this Letter, we present the inscription of highly reflective first-order fiber Bragg gratings (FBGs) in soft indium fluoride-based (InF3) fibers using a two-beam phase-mask interferometer and a femtosecond laser. We demonstrate an enhanced response of InF3-based fiber to a visible (400 nm) inscription wavelength compared to ultraviolet irradiation at 266 nm. In this way, FBGs