Interestingly, the pretreatment with solidagenone at 100 mg/kg avoided the behavioral alterations in OFT. In the mice post treated with solidagenone, all tested doses of resulted in an antidepressant-like effect evidenced by the decrease in immobility time in the TST. This effect was accompanied by a decrease in the MPO activity and in the IL-6 and TNF levels in the cortex in parallel to the increase in catalase activity. The solidagenone has a promissor antidepressant-like potential, which can result of its beneficial action in the neuroinflammation process and due its antioxidant capability at the central nervous system. The solidagenone has a promissor antidepressant-like potential, which can result of its beneficial action in the neuroinflammation process and due its antioxidant capability at the central nervous system.Selective serotonin reuptake inhibitors are the first-line antidepressants for treating major depressive and post-traumatic stress disorders. These inhibitors directly bind to the serotonin transporter (SERT). Protein kinase C (PKC) is a key regulator of SERT functions as it can attenuate SERT activity through phosphorylation and its subsequent internalization. However, whether PKC-regulated SERT functions are involved in emotional impairment in a mouse model of stress remains unclear. Using a mouse model of swim-induced stress, we investigated whether the PKC-SERT system is involved in emotional impairment and tried to identify the PKC isoforms involved in this mechanism. Mice exposed to swim stress showed enhanced immobility and decreased social interaction times compared to those in swim stress-naive mice. Moreover, significant decreases in phosphorylated PKCβI and SERT levels were observed in the prefrontal cortex of stressed mice compared to those of swim stress-naive mice. No changes in levels of other phosphorylated PKC isoforms were observed between the two groups. Phorbol 12-myristate 13-acetate (a PKC activator) administration significantly attenuated enhanced immobility and decreased social interaction time in stressed mice and increased the serotonin turnover. Further, the PKC activator increased levels of phosphorylated PKCβI or SERT and decreased cell surface localization of SERT in stressed mice. Contrary to this, chelerythrine (a PKC inhibitor) administration exacerbated the immobility and sociality of mice exposed to mild stress. Our results suggest that PKCβI activation attenuates emotional impairment by suppressing SERT function in stressed mice. https://www.selleckchem.com/products/Cytarabine(Cytosar-U).html Thus, PKCβI may be a key target for the development of new treatment strategies for emotional impairment in stress-related disorders.Soluble amyloid beta (Aβ) is believed to contribute to cognitive deficits in the early stages of Alzheimer's disease (AD). Increased soluble Aβ1-42 in the hippocampus is closely correlated with spatial learning and memory deficits in AD. Riluzole (RLZ), an FDA-approved drug for amyotrophic lateral sclerosis (ALS), has beneficial effects for AD. However, the mechanism underlying the effects remains unclear. In this study, its neuroprotective effect against soluble Aβ1-42-induced spatial cognitive deficits in rats was assessed. We found that intrahippocampal injection of soluble Aβ1-42 impaired spatial cognitive function and suppressed long-term potentiation (LTP) of the DG region, which was relevant to soluble Aβ1-42-induced shift of the hippocampal excitation/inhibition balance toward excitation. Interestingly, RLZ ameliorated Aβ1-42-induced behavioral and LTP impairments through rescuing the soluble Aβ1-42-induced excitation/inhibition imbalance. RLZ attenuated Aβ1-42-mediated facilitation of excitatory synaptic transmission by facilitating glutamate reuptake and decreasing presynaptic glutamate release. Meanwhile, RLZ attenuated the suppression of inhibitory synaptic transmission caused by Aβ1-42 by potentiating postsynaptic GABA receptor function. These results suggest that RLZ exerts a neuroprotective effect against soluble Aβ1-42-related spatial cognitive deficits through rescuing the excitation/inhibition imbalance, and it could be a potential therapy for AD. Altered structural and functional brain networks have been extensively studied in major depressive disorder (MDD) patients. However, whether the differential connectivity patterns in the rich-club organization, assessed from structural brain network analyses, and the associated connections of these regions are particularly susceptible to depression remain unclear. We acquired resting-state functional magnetic resonance imaging (R-fMRI) and diffusion tensor imaging (DTI) from 31 unmedicated MDD patients and 32 cognitively normal (CN) subjects and completed a series of neuropsychological tests. Rich-club organization, network properties, and coupling between structural and functional connectivity (SC-FC) were explored. Furthermore, whether these indices could potentially deliver effective clinical predictive value for MDD patients were examined. The MDD patients showed disrupted structural rich-club organization and modularity, as well as a distinct correlation pattern between global efficiency and rich-club organization. Importantly, reduced SC-FC coupling, reflecting a decreased agreement in the integrity of the networks, was significantly associated with the strength of structural rich-club connections in the MDD patients. Furthermore, the disrupted structural rich-club organization, which was primarily located in the default mode network (DMN) and executive control network (ECN), emerged as a valuable indicator to distinguish between MDD and CN. Findings of this study identified that the disrupted rich-club structural organization significantly influenced brain structural network modularity and integrity and could serve as a promising biological marker for the identification of MDD patients. Findings of this study identified that the disrupted rich-club structural organization significantly influenced brain structural network modularity and integrity and could serve as a promising biological marker for the identification of MDD patients.