https://www.selleckchem.com/products/VX-770.html Hibiscus species are rich in phenolic compounds and have been traditionally used for improving human health through their bioactive activities. The present study investigated the phenolic compounds of leaf extracts from 18 different H. acetosella accessions and evaluated their biofunctional properties, focusing on antioxidant and antibacterial activity. The most abundant phenolic compound in H. acetosella was caffeic acid, with levels ranging from 14.95 to 42.93 mg/100 g. The antioxidant activity measured by the ABTS assay allowed the accessions to be classified into two groups a high activity group with red leaf varieties (74.71-84.02%) and a relatively low activity group with green leaf varieties (57.47-65.94%). The antioxidant activity was significantly correlated with TAC (0.933), Dp3-Sam (0.932), Dp3-Glu (0.924), and Cy3-Sam (0.913) contents (p less then 0.001). The H. acetosella phenolic extracts exhibited antibacterial activity against two bacteria, with zones of inhibition between 12.00 and 13.67 mm (Staphylococcus aureus), and 10.67 and 13.33 mm (Pseudomonas aeruginosa). All accessions exhibited a basal antibacterial activity level (12 mm) against the Gram-positive S. aureus, with PI500758 and PI500764 exhibiting increased antibacterial activity (13.67 mm), but they exhibited a more dynamic antibacterial activity level against the Gram-negative P. aeruginosa.Silicone rubbers (SIRs) are common industrial materials which are often used for electrical insulation including weather sheds on non-ceramic insulators (NCIs). While SIRs are typically resilient to outside environments, aging can damage SIRs' favorable properties such as hydrophobicity and electrical resistance. Detecting SIR aging and damage, however, can be difficult, especially in service. In this study we used hyperspectral imaging (HSI) and previously investigated aging methods as a proof of concept to show how HSI may be used to detect various type