https://www.selleckchem.com/products/ca3.html Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.53BP1 activates nonhomologous end joining (NHEJ) and inhibits homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Dissociation of 53BP1 from DSBs and consequent activation of HR, a less error-prone pathway than NHEJ, helps maintain genome integrity during DNA replication; however, the underlying mechanisms are not fully understood. Here, we demonstrate that E3 ubiquitin ligase SPOP promotes HR during S phase of the cell cycle by excluding 53BP1 from DSBs. In response to DNA damage, ATM kinase-catalyzed phosphorylation of SPOP causes a conformational change in SPOP, revealed by x-ray crystal structures, that stabilizes its interaction with 53BP1. 53BP1-bound SPOP induces polyubiquitination of 53BP1, eliciting 53BP1 extraction from chromatin by a valosin-containing protein/p97 segregase complex. Our work shows that SPOP facilitates HR repair over NHEJ during DNA replication by