https://www.selleckchem.com/products/AC-220.html Each neuron in the central nervous system has many dendrites, which provide input information through impulses. Assuming that a neuron's decision to continue or stop firing is made by rules applied to the dendrites' inputs, we associate neuron activity with a quantum like-cellular automaton (QLCA) concepts. Following a previous study that related the CA description with entangled states, we provide a quantum-like description of neuron activity. After reviewing and presenting the entanglement concept expressed by QLCA terminology, we propose a model that relates quantum-like measurement to consciousness. Then, we present a toy model that reviews the QLCA theory, which is adapted to our terminology. The study also focuses on implementing QLCA formalism to describe a single neuron activity. Brain functional networks (BFNs) constructed using resting-state functional magnetic resonance imaging (fMRI) have proven to be an effective way to understand aberrant functional connectivity in autism spectrum disorder (ASD) patients. It is still challenging to utilize these features as potential biomarkers for discrimination of ASD. The purpose of this work is to classify ASD and normal controls (NCs) using BFNs derived from rs-fMRI. A deep learning framework was proposed that integrated convolutional neural network (CNN) and channel-wise attention mechanism to model both intra- and inter-BFN associations simultaneously for ASD diagnosis. We investigate the effects of each BFN on performance and performed inter-network connectivity analysis between each pair of BFNs. We compared the performance of our CNN model with some state-of-the-art algorithms using functional connectivity features. We collected 79 ASD patients and 105 NCs from the ABIDE-I dataset. The mean accuracy of our classification algorithm was 77.74% for classification of ASD versus NCs. The proposed model is able to integrate information from multiple BFNs to improve d