https://www.selleckchem.com/products/iberdomide.html Antibiotics had been paid more and more attention to their toxicity to non-target aquatic organisms in the aquatic environment. As azithromycin (AZI) was an important antibiotic pollutant in water, its toxicity to aquatic organisms had been investigated. In this study, the potential aquatic ecological risk of AZI was identified by assessing the toxicity on the feeding behavior and physiological function of Daphnia magna (D. magna) under the different exposure pathways (aqueous phase exposure vs. food phase exposure). For the food Chlorella pyrenoidosa (C. pyrenoidosa), AZI could inhibit the growth and nutrition accumulation with concentration- and time-response relationship. For D. magna, the feeding behavior was inhibited by AZI under the aqueous phase exposure pathway. However, the feeding behavior was inhibited firstly and then reversed into promotion in the low and medium concentration groups and was continually promoted in the high concentration group under the food phase exposure pathway. The accumulating to the change of D. magna's feeding behavior and nutrition accumulation. These results also provided a comprehensive perspective to evaluate the toxic effects of non-lethal dose antibiotics to non-target aquatic organisms via different exposure pathways. Sodium sulfide (Na2S) is usually used as an amendment in industrial sewage treatment. To evaluate the effects of Na2S on the growth of Robinia pseudoacacia (black locust), heavy metal immobilization, and soil microbial activity, the R. pseudoacacia biomass and nutrient content and the soil heavy metal bioavailability, enzyme activity, and arbuscular mycorrhizal (AM) fungal community were measured by a single-factor pot experiment. The Pb-Zn-contaminated soil was collected from a Pb-Zn mine that had been remediated by R. pseudoacacia for five years. Three pollution levels (unpolluted, mildly polluted, and severely polluted) were evaluated by the pollution lo