https://www.selleckchem.com/products/bay-2402234.html Q-M3 and Q-CTS2730/Z780 are undoubtedly autochthonous lineages and represent the most frequent subhaplogroups, with significant representation in self-defined aboriginal populations, and their autochthonous status has been previously described. The aim of present work was to identify the continental origin of the remaining Q lineages. Thus, we analyzed the STR haplotypes for the samples and compared them with haplotypes described by other authors for the rest of the world. Even when haplogroup Q lineages have been extensively studied in America, some of them could have their origin in post-Columbian human migration from Europe and Middle East. Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate, as precursors. Upon the analyses of phase and chemical structures of bioactive glass in different gelation times (12, 48, and 100 h), the appropriate heat treatment (at 525, 575, and 625 °C) was performed to eliminate nitrate compounds and stabilize the glass powder samples. The in vitro assay in SBF solution revealed the bioactivity of the synthesized 58S glass through the morphological (SEM), chemical structure (FTIR), release of calcium, phosphorous and silicon elements, pH variations, and weight loss measurements. The behavior of MSCs in the presence of bioactive glass powders was studied by MTT cytotoxicity, cell staining, ALP activity and biomineralization tests, as well as by the evaluation of ALP, osteocalcin, osteonectin, collagen I, and RUNX2 gene expression. The results confirmed a gelation time of 100 h and a calcination temperature of 575 °C at optimal conditions for the synthesis of nitrat