https://www.selleckchem.com/products/SB-431542.html Background Amniotic fluid-derived mesenchymal stromal cells (AFMSCs) are promising stem cells for regeneration medicine. However, AFMSCs isolated at different stages of pregnancy have different biological characteristics, and the therapeutic effects can differ in vivo and in vitro. The mechanisms underlying these differences have not been defined. Methods Bioinformatics analysis of the AFMSC transcriptome identified Chrdl1 as one of the differentially expressed genes. We evaluated the effects of Chrdl1 overexpression or knockdown on the proliferation and migration of AFMSCs. Target prediction was performed using miRanda software to identify the upstream microRNA of Chrdl1. The interaction between Chrdl1 mRNA and its upstream microRNA was evaluated using a dual-luciferase reporter gene assay. Results Chrdl1 was expressed at lower levels in AFMSCs derived from the early stages of pregnancy. It could suppress AFMSC proliferation and migration. miR-532-3p promoted AFMSC proliferation and migration by targeting the 3' UTR of Chrdl1 and downregulating its expression.The roles of the extracellular biophysical environment in cancer are barely studied. This study considers the possibility that cell-like topography of a cancer cell environment may influence chemo-responses. Here, a novel bioimprinting technique was employed to produce cell-like topography on the polystyrene substrates used for cell culture. In this work, we have shown that extracellular biophysical cues generated from the topography alter the chemosensitivity of ovarian cancer cells. The three-dimensionality of the bioimprinted surface altered the cell-surface interaction, which consequently modulated intracellular signalling and chemoresponses. Sensitivity to platinum was altered more than that to paclitaxel. The effect was largely mediated through the integrin/focal adhesion system and the Rho/ROCK pathway. Moreover, the results provided evidence that biop