https://www.selleckchem.com/products/xl177a.html Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a scanning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.We observe clear evidence of adiabatic passage between photon populations via a four-wave mixing process, implemented through a dispersion sweep arranged by a core diameter taper of an optical fiber. Photonic rapid adiabatic passage through the cubic electric susceptibility thus opens precise control of frequency translation between broadband light fields to all common optical media. Areas of potential impact include optical fiber and on-chip waveguide platforms for quantum information, ultrafast spectroscopy and metrology, and extreme light-matter interaction science.We construct a polarization-mediated magic-intensity (MI) optical dipole trap (ODT) array, in which the detrimental effects of light shifts on the mixed-species qubits are efficiently mitigated so that the coherence times of the mixed-species qubits are both substantially enhanced and balanced for the first time. This mixed-species magic trapping technique relies on th