This mixture effect could favor permeation of other compounds through human skin.Silicosis is a major public health concern with various contributing factors. The renin-angiotensin system (RAS)is a critical regulator in the pathogenesis of this disease. We focused on two key RAS enzymes, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2), to elucidate the activation of the ACE-angiotensin II (Ang II)-angiotensin II receptor 1 (AT1) axis and the inhibition of the ACE2-angiotensin-(1-7) [Ang-(1-7)]-Mas receptor axis in C57BL/6mice following SiO2 treatment. Silica exposure caused nodule formation, pulmonary interstitial fibrosis, epithelial-mesenchymal transition (EMT), abnormal deposition of extracellular matrix, and impaired lung function in mice. These effects were attenuated by the inhibition of ACE (captopril), blockade of the AT1(losartan), or systemic knockdown of the Ace gene. These effects were exacerbated by the inhibition of ACE2 (MLN-4760), blockade of the Mas (A779), or knockdown of the Ace2 gene. N-Acetyl-Seryl-Asparyl-Lysyl-Proline (Ac-SDKP), an anti-fibrotic peptide, ameliorated the silica-exposure-induced pathological changes by targeting the RAS system by activating the protective ACE2-Ang-(1-7)-Mas axis and inhibiting the deleterious ACE-Ang II-AT1 axis, thereby exerting a protective effect. This was confirmed in mouse lung type II epithelial cells (MLE-12) pretreated with Ang II and/or gene silencing separately targeting Ace and Ace2.The effects of Ac-SDKP were similar to those produced by Ace gene silencing and were partly attenuated by Ace2 deficiency. These findings suggested that RAS plays critical roles in the pathomechanism of silicosis fibrosis and that Ac-SDKP regulates lung RAS to inhibit EMT in silicotic mice and MLE-12 cells.Hydraulic fracturing ("fracking") is a process used to enhance retrieval of gas from subterranean natural gas-laden rock by fracturing it under pressure. Sand used to stabilize fissures and facilitate gas flow creates a potential occupational hazard from respirable fracking sand dust (FSD). https://www.selleckchem.com/products/sbfi-26.html As studies of the immunotoxicity of FSD are lacking, the effects of whole-body inhalation (6 h/d for 4 d) of a FSD, i.e., FSD 8, was investigated at 1, 7, and 27 d post-exposure in rats. Exposure to 10 mg/m3 FSD 8 resulted in decreased lung-associated lymph node (LLN) cellularity, total B-cells, CD4+ T-cells, CD8+ T-cells and total natural killer (NK) cells at 7-d post exposure. The frequency of CD4+ T-cells decreased while the frequency of B-cells increased (7 and 27 d) in the LLN. In contrast, increases in LLN cellularity and increases in total CD4+ and CD8+ T-cells were observed in rats following 30 mg/m3 FSD 8 at 1 d post-exposure. Increases in the frequency and number of CD4+ T-cells and NK cells were observed in bronchial alveolar lavage fluid at 7-d post-exposure (10 mg/m3) along with an increase in total CD4+ T-cells, CD11b + cells, and NK cells at 1-day post-exposure (30 mg/m3). Increases in the numbers of B-cells and CD8+ T-cells were observed in the spleen at 1-day post 30 mg/m3 FSD 8 exposure. In addition, NK cell activity was suppressed at 1 d (30 mg/m3) and 27 d post-exposure (10 mg/m3). No change in the IgM response to sheep red blood cells was observed. The findings indicate that FSD 8 caused alterations in cellularity, phenotypic subsets, and impairment of immune function.Mammalian sterile 20-like kinase 1/2 (MST1/2) plays an important role in cell growth and apoptosis and functions as a tumor suppressor. Previously, we showed that MST2 overexpression activates Estrogen receptor alpha (ERα) in human breast cancer MCF-7 cells in the absence of a ligand. Here, we examined the role of MST2 in the growth of ER-positive MCF-7 cells. Cell cycle, apoptosis, and mammosphere formation assay method were implemented to detect the biological effects of MST2 ablation on the growth of MCF-7 cells in vitro. The effect of MST2-siRNA on MCF-7 cells tumor growth in vivo was studied in tumor-bearing mouse model. Kaplan-Meier plotter analysis was used to determine the effect of MST2 on overall survival in breast cancer patients. MST2 overexpression increased cell viability marginally. The ablation of MST2 using siRNA dramatically suppressed the viability of the MCF-7 cells, but not ER-negative MDA-MB-231 breast cancer cells. Furthermore, MST2 knockdown increased caspase-dependent apoptosis and led to decreased mammosphere formation. Treatment of MCF-7 tumor-bearing mice with MST2 siRNA significantly inhibited tumor growth. The tumor weight was reduced further when tamoxifen was added. Patients with ER-positive breast cancer with low MST2 expression had better overall survival than did those with high MST2 expression in Kaplan-Meier survival analyses using public datasets. Our results provide new insight into the role of MST2, a key component of the Hippo signaling pathway, in mediating breast cancer progression.Previous studies in MRL+/+ mice suggest involvement of oxidative stress (OS) in trichloroethene (TCE)-mediated autoimmunity. However, molecular mechanisms underlying the autoimmunity remain to be fully elucidated. Even though toll-like receptors (TLRs) and Nuclear factor (erythroid-derived 2)-like2 (Nrf2) pathways are implicated in autoimmune diseases (ADs), interplay of OS, TLR and Nrf2 in TCE-mediated autoimmune response remains unexplored. This study was, therefore, undertaken to clearly establish a link among OS, TLR4 and Nrf2 pathways in TCE-induced autoimmunity. Groups of female MRL+/+ mice were treated with TCE, sulforaphane (SFN, an antioxidant) or TCE + SFN (TCE, 10 mmol/kg, i.p., every 4th day; SFN, 8 mg/kg, i.p., every other day) for 6 weeks. TCE exposure led to greater formation of serum 4-hydroxynonenal (HNE)-protein adducts, HNE-specific circulating immune complexes (CICs) and protein carbonyls which were associated with significant increases in serum antinuclear antibodies (ANAs). Moreover, incubation of splenocytes from TCE-treated mice with HNE-modified proteins resulted in enhanced splenocyte proliferation and cytokine release evidenced by increased expression of cyclin D3, Cyclin-dependent kinase 6 (CDK6) and phospho-pRb as well as increased release of IL-6, TNF-α and INF-γ. More importantly, TCE exposure resulted in increased expression of TLR4, MyD88, IRAK4, NF-kB and reduced expression of Nrf2 and HO-1 in the spleen. Remarkably, SFN supplementation not only attenuated TCE-induced OS, upregulation in TLR4 and NF-kB signaling and downregulation of Nrf2, but also ANA levels. These results, in addition to providing further support to a role of OS, also suggest that an interplay among OS, TLR4 and Nrf2 pathways contributes to TCE-mediated autoimmune response. Attenuation of TCE-mediated autoimmunity by SFN provides an avenue for preventive and/or therapeutic strategies for ADs involving OS.