https://www.selleckchem.com/products/hsp990-nvp-hsp990.html We further show that the hybrid liposomes exhibit unambiguous photoactivity in visible light-harvesting and oxygen release, likely resulting from a larger specific surface area of the TiO2 shell, an efficient interfacial conjugation of the chlorophyll molecules with the thin TiO2 layer. The density functional theory (DFT) calculations were in accordance with the eletron injection processes.We expect that the present work will open a new insight into interfacial recombination between light-harvesting pigments and their sensitized photocatalysis, and develop a new kind of artificial photosynthetic materials with zero-cost of environmental degradation and high efficiency for the photocatalytic O2 production.Biofilm is difficult to thoroughly cure with conventional antibiotics due to the high mechanical stability and antimicrobial barrier resulting from extracellular polymeric substances. Encouraged by the great potential of magnetic micro-/nanorobots in various fields and their enhanced action in swarm form, we designed a magnetic microswarm consisting of porous Fe3O4 mesoparticles (p-Fe3O4 MPs) and explored its application in biofilm disruption. Here, the p-Fe3O4 MPs microswarm (p-Fe3O4 swarm) was generated and actuated by a simple rotating magnetic field, which exhibited the capability of remote actuation, high cargo capacity, and strong localized convections. Notably, the p-Fe3O4 swarm could eliminate biofilms with high efficiency due to synergistic effects of chemical and physical processes (i) generating bactericidal free radicals (•OH) for killing bacteria cells and degrading the biofilm by p-Fe3O4 MPs; (ii) physically disrupting the biofilm and promoting •OH penetration deep into biofilms by the swarm motion. As a demonstration of targeted treatment, the p-Fe3O4 swarm could be actuated to clear the biofilm along the geometrical route on a 2D surface and sweep away biofilm clogs in a 3D U-shaped tube. Th