https://www.selleckchem.com/products/gsk2643943a.html Pulmonary endothelial cell injury is a hallmark of acute lung injury. High-mobility group box 1 (HMGB1) can modulate the inflammatory response via endothelial cell activation and release of inflammatory molecules. Thus, we tested whether induced pluripotent stem cells (iPSCs) can alleviate ischemia/reperfusion (I/R) induced lung injury, and, if so, whether HMGB1 mediates the effect in a male C57BL/6 mouse model. Intravenously injected iPSCs into mice 2 h after I/R showed a significant attenuation of lung injury (assessed by lung mechanics, edema, and histology) 24 h after reperfusion (compared with controls), along with decreases in HMGB1, phosphorylated nuclear factor-κB, inflammatory cytokines [interleukin (IL)1β, IL6 and tumor necrosis factor-α], and the activation of endothelial cells. Furthermore, these effects of iPSCs can be mimicked by blocking HMGB1 with an inhibitor in vivo and in vitro. We conclude that iPSCs can be a potential therapy for I/R-induced lung injury. These cells may exert therapeutic effects through blocking HMGB1 and inflammatory cytokines. We aimed to reveal if low dose X-rays would induce harmful or beneficial effect or dual response on biological cells and whether there are conditions the radiation can enhance gene transfer efficiency and promote cell growth but without damage to the cells. A systematic study was performed on the effects of Kilo-V and Mega-V X-rays on the cell morphology, viability, membrane permeability, DNA damage, and gene transfection of 293 T and CHO cells. The Kilo-V X-rays of very low doses from 0.01 to 0.04 Gray in principle didn't induce any significant change in cell morphology, growth, membrane permeability, and cause DNA damage. The Mega-V X-ray had a damage threshold between 1.0 and 1.5 Gray. The 0.25 Gray Mega-V-X-ray could promote cell growth and gene transfer, while the 1.5 Gray Mega-V X-ray damaged cells. The very low dose of KV X-rays is safe to cell