https://www.selleckchem.com/products/alw-ii-41-27.html These investigations present a contribution to the basic understanding of plasmon-enhanced enzyme-like reaction and provided an insight into the optimization of the SuOx mimetic performance of nanomaterials.Mechanical stability of hybrid organic-inorganic perovskites (HOIPs) is essential to achieve long-term durable HOIP-based devices. While HOIPs in two-dimensional (2D) form offer numerous options in the structure and composition to tune their mechanical properties, little is known about the structure-mechanical-property relationship in this family of materials. Here, we investigated a series of 2D lead halide HOIPs by nanoindentation to explore the impact of critical factors controlling the properties of both the organic and inorganic layers on the materials' out-of-plane mechanical performance. We find that the lead-halide bond in the inorganic framework can significantly influence the mechanical properties of 2D Ruddlesden-Popper (RP) HOIPs with n = 1. Like 3D HOIPs, stronger lead-halide bond strength leads to a higher Young's modulus in these 2D HOIPs, i.e., E⊥Cl ≳ E⊥Br > E⊥I. In contrast, the hardness of 2D RP HOIPs follows a trend of HBr2D > HCl2D > HI2D, which is different from that found in 3D HOIPs, pr providing guidelines and inspirations to achieve material design with required mechanical properties for applications.Lightweight structural materials are critical in construction and automobile applications. In past centuries, there has been great success in developing strong structural materials, such as steels, concrete, and petroleum-based composites, most of which, however, are either too heavy, high cost, or nonrenewable. Biosourced composites are attractive alternatives to conventional structural materials, especially when high mechanical strength is presented. Here we demonstrate a strong, lightweight bio-based structural material derived from bamboo via a two-step manufacturing process involving