Nematode-trapping fungi (NTF) are carnivorous fungi that prey on nematodes under nutrient-poor conditions via specialized hyphae that function as traps. The molecular mechanisms involved in the interactions between NTF and their nematode prey are largely unknown. In this study, we conducted forward genetic screens to identify potential genes and pathways that are involved in trap morphogenesis and predation in the NTF Arthrobotrys oligospora. Using Ethyl methanesulfonate and UV as the mutagens, we generated 5552 randomly mutagenized A. oligospora strains and identified 15 mutants with strong defects in trap morphogenesis. Whole-genome sequencing and bioinformatic analyses revealed mutations in genes with roles in signaling, transcription or membrane transport that may contribute to the defects of trap morphogenesis in these mutants. We further conducted functional analyses on a candidate gene, YBP-1, and demonstrate that mutation of that gene was causative of the phenotypes observed in one of the mutants. The methods established in this study might provide helpful insights for establishing forward genetic screening methods for other non-model fungal species.Candida albicans, a major human fungal pathogen associated with high mortality and/or morbidity rates in a wide variety of immunocompromised individuals, undergoes a reversible morphological transition from yeast to filamentous cells that is required for virulence. While previous studies have identified and characterized global transcriptional mechanisms important for driving this transition, as well as other virulence properties, in C. albicans and other pathogens, considerably little is known about the role of genome-wide translational mechanisms. Using ribosome profiling, we report the first global translational profile associated with C. albicans morphogenesis. Strikingly, many genes involved in pathogenesis, filamentation, and the response to stress show reduced translational efficiency (TE). Several of these genes are known to be strongly induced at the transcriptional level, suggesting that a translational fine-tuning mechanism is in place. We also identify potential upstream open reading frames (uORFs), associated with genes involved in pathogenesis, and novel ORFs, several of which show altered TE during filamentation. Using a novel bioinformatics method for global analysis of ribosome pausing that will be applicable to a wide variety of genetic systems, we demonstrate an enrichment of ribosome pausing sites in C. albicans genes associated with protein synthesis and cell wall functions. Altogether, our results suggest that the C. albicans morphological transition, and most likely additional virulence processes in fungal pathogens, is associated with widespread global alterations in TE that do not simply reflect changes in transcript levels. These alterations affect the expression of many genes associated with processes essential for virulence and pathogenesis.The oyster mushroom Pleurotus ostreatus is a basidiomycete commonly found in the rotten wood and it is one of the most cultivated edible mushrooms globally. Pleurotus ostreatus is also a carnivorous fungus, which can paralyze and kill nematodes within minutes. However, the molecular mechanisms of the predator-prey interactions between P. ostreatus and nematodes remain unclear. PC9 and PC15 are two model strains of P. ostreatus and the genomes of both strains have been sequenced and deposited at the Joint Genome Institute (JGI). These two monokaryotic strains exhibit dramatic differences in growth, but because PC9 grows more robustly in laboratory conditions, it has become the strain of choice for many studies. Despite the fact that PC9 is the common strain for investigation, its genome is fragmentary and incomplete relative to that of PC15. To overcome this problem, we used PacBio long reads and Illumina sequencing to assemble and polish a more integrated genome for PC9. Our PC9 genome assembly, distributed across 17 scaffolds, is highly contiguous and includes five telomere-to-telomere scaffolds, dramatically improving the genome quality. We believe that our PC9 genome resource will be useful to the fungal research community investigating various aspects of P. ostreatus biology.Pleurotus mushrooms are among the most cultivated fungi in the world and are highly valuable for food, medicine, and biotechnology industries. Furthermore, Pleurotus species are carnivorous fungi; they can rapidly paralyze and kill nematodes when nutrient-deprived. The predator-prey interactions between Pleurotus and nematodes are still widely unexplored. Moreover, the molecular mechanisms and the genes involved in the carnivorous behavior of Pleurotus mushrooms remain a mystery. We are attempting to understand the interactions between Pleurotus mushrooms and their nematode prey through genetic and genomic analyses. Two single spores (ss2 and ss5) isolated from a fruiting body of Pleurotus pulmonarius exhibited significant differences in growth and toxicity against nematodes. Thus, using PacBio long reads, we assembled and annotated two high-quality genomes for these two isolates of P. pulmonarius. https://www.selleckchem.com/products/bardoxolone.html Each of these assemblies contains 23 scaffolds, including 6 (ss2) and 8 (ss5) telomere-to-telomere scaffolds, and they are among the most complete assembled genomes of the Pleurotus species. Comparative analyses identified the genomic differences between the two P. pulmonarius strains. In sum, this work provides a genomic resource that will be invaluable for better understanding the Italian oyster mushroom P. pulmonarius.Due to their universal presence and high sequence conservation, ribosomal RNA (rRNA) sequences are used widely in phylogenetics for inferring evolutionary relationships between microbes and in metagenomics for analyzing the composition of microbial communities. Most microbial genomes encode multiple copies of rRNA genes to supply cells with sufficient capacity for protein synthesis. These copies typically undergo concerted evolution that keeps their sequences identical, or nearly so, due to gene conversion, a type of intragenomic recombination that changes one copy of a homologous sequence to exactly match another. Widely varying rates of rRNA gene conversion have previously been estimated by comparative genomics methods and using genetic reporter assays. To more directly measure rates of rRNA intragenomic recombination, we sequenced the seven Escherichia coli rRNA operons in 15 lineages that were evolved for ∼13,750 generations with frequent single-cell bottlenecks that reduce the effects of selection. We identified 38 gene conversion events and estimated an overall rate of intragenomic recombination within the 16S and 23S genes between rRNA copies of 3.