https://www.selleckchem.com/products/CHR-2797(Tosedostat).html A bio-inspired multifunctionalized silk fibroin (BMS) was synthesized in order to mimic the interaction of nidogen with the type IV collagen and laminin of basement membranes. The designed BMS consists of a motif of laminin α-chain-derived, called IK peptide, and type IV collagen covalently bound to the silk fibroin (SF) by using EDC/NHS coupling and a Cu-free click chemistry reaction, respectively. Silk fibroin was chosen as the main component of the BMS because it is versatile and biocompatible, induces an in vivo favorable bioresponse, and moreover can be functionalized with different methods. The chemical structure of BMS was analyzed by using X-ray photoelectron spectroscopy, attenuated total reflection-Fourier transform infrared, cross-polarization magic angle spinning nuclear magnetic resonance techniques, and colorimetric assay. The SF and BMS solutions were cross-linked by sonication to form hydrogels or casted to make films in order to evaluate and compare the early adhesion and viability of MRC5 cells. BMS hydrogels were also characterized by rheological and thermal analyses.Two new platinum(II) compounds with trans-(NHC)2Pt(C≡C-C≡C-R)2 (where NHC = N-heterocyclic carbene and R = phenyl or trimethylsilyl) architecture exhibit sharp blue-green or saturated deep-blue phosphorescence with high color purity. The photoluminescence of both compounds is dominated by an intense 0-0 band with distinct but weaker vibronic progressions in both tetrahydrofuran (THF) and poly(methyl methacrylate) (PMMA) matrix. The full width at half-maximum (fwhm) of the photoluminescence of trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 are 10 nm at room temperature and 4 nm at 77 K, while the trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 shows a fwhm of 14 nm at room temperature and 8 nm at 77 K. The Commission International de L'Eclairage (CIE) coordinates of trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 are (0.222, 0.429) in PMMA, and trans-(NHC)2Pt(C≡