https://www.selleckchem.com/products/Compk.html Alzheimer's disease (AD) is the most common form of dementia that progressively disrupts neurocognitive function, which has neither cure nor effective treatment. Hypercholesterolemia might be involved in brain alterations that could evolve into AD. The present study aims to evaluate the potential of omega-3, Co-enzyme Q10 (Co-Q10), as well as their combination in ameliorating hypercholesterolemia-initiated AD-like disease. We adapted a hypercholesterolemic (HC) rat model, a model of oxidative stress-mediated neurodegeneration, to study AD-like pathology. Hypercholesterolemia resulted in increased lipid peroxidation coupled with declined nitric oxide production, reduced glutathione levels, and decreased antioxidant activities of glutathione-s-transferase (GST) and glutathione peroxidase (GSH-Px) in the brain. Moreover, hypercholesterolemia resulted in decreased acetylcholine (ACh) levels and increased acetylcholine-esterase (AChE) activity, along with an increment of tumor necrosis factor and amyloid-β 42. Behaviorally, HC-rats demonstrated depressive-like behavior and declined memory. Treatment of HC-rats with omega-3 and Co-Q10 (alone or in combination) alleviated the brain oxidative stress and inflammation, regulated cholinergic functioning, and enhanced the functional outcome. These findings were verified by the histopathological investigation of brain tissues. This neuroprotective potential of omega-3 and Co-Q10 was achieved through anti-oxidative, anti-inflammatory, anti-amyloidogenic, pro-cholinergic, and memory-enhancing activities against HC-induced AD-like disease; suggesting that they may be useful as prophylactic and therapeutic agents against the neurotoxic effects of hypercholesterolemia.In the present study, we used a serum-free culture media to propagate goat putative spermatogonial stem cells (SSCs) and evaluated the effect of crucial growth factors on relative expression of some SSC markers and self-re