https://www.selleckchem.com/products/SB-431542.html Periodically ordered arrays of vertically aligned Si nanowires (Si NWs) are successfully fabricated by nanosphere lithography combined with metal-assisted chemical etching. By adjusting the etching time, both the nanowires' diameter and length can be well controlled. The conductive properties of such Si NWs and particularly their size dependence are investigated by conductive atomic force microscopy (CAFM) on individual nanowires. The results indicate that the conductance of Si NWs is greatly relevant to their diameter and length. Si NWs with smaller diameters and shorter lengths exhibit better conductive properties. Together with the I-V curve characterization, a possible mechanism is supposed with the viewpoint of size-dependent Schottky barrier height, which is further verified by the electrostatic force microscopy (EFM) measurements. This study also suggests that CAFM can act as an effective means to explore the size (or other parameters) dependence of conductive properties on individual nanostructures, which should be essential for both fabrication optimization and potential applications of nanostructures.PURPOSE Insomnia is a frequent sleeping disorder in the general and clinical population. With an increasing proportion of health care services being provided as outpatient care, a short, valid and reliable tool is needed to identify insomnia in medical patients under outpatient care in Denmark. The Insomnia Severity Index (ISI) could be the needed tool if found valid and reliable. Hence, the aim of this study is to evaluate elements of the psychometric properties of the Danish version of ISI (ISI-DK). METHODS Outpatients from three hospital wards and one rehabilitation center were asked to complete the ISI-DK twice, 2 weeks apart. Internal consistency, discriminative validity, test-retest reliability, and measurement error was assessed. RESULTS The ISI-DK was completed by 249 (79.0%) participants the first ti