https://www.selleckchem.com/products/gsk2656157.html Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.Nearly five decades of research have established myosin as the main motor responsible for cytokinesis in organisms on the branch of the phylogenetic tree that includes amoebas, fungi and animals. This research has grown to be more mechanistic over the past decade, so we now have computer simulations of physically reasonable models that explain how myosins contribute to the assembly and constriction of contractile rings that pinch dividing cells into two daughter cells. Isoforms of myosin-II, from the same family as muscle myosins, are the main myosins for cytokinesis, but other myosins contribute to cytokinesis in fission yeast. Progress has been made on how animal cells use Rho-GTPases to control the accumulation and activity of myosin-II at the site of cleavage, but the regulatory mechanisms are less clear in other systems.Although originally characterized as a cytoplasmic protein, myosin of various classes also performs key functions in the nucleus. We review the data concerning the nuclear localization, mechanism of entry, and functional interactions of myosin I, II, V, VI, X, XVI, and XVIII. To date, the first-characterized "nuclear myosin