Caregivers reported that their children expressed worries about getting sick and infecting others as well as about changes in daily life becoming permanent. Caregivers observed their children's preoccupation with COVID-19 and worries in conversations, play and drawings as well as in behavioural changes - increased arousal, cautiousness, avoidance and attachment-seeking behaviour. Conclusion Preschool children can and do express negative thoughts and worries and have also experienced threat and increased vulnerability during the COVID-19 pandemic. A theoretical model is proposed that could inform assessments, interventions and future research in the field.Pre-operative chemoradiotherapy reduces local recurrence rates in locally advanced rectal cancer. 10-20% of patients undergo complete response to chemoradiotherapy, however, many patients show no response. The mechanisms underlying this are poorly understood; identifying molecular and immunological factors underpinning heterogeneous responses to chemoradiotherapy, will promote development of treatment strategies to improve responses and overcome resistance mechanisms. This review describes the advances made in pre-clinical modelling of colorectal cancer, including genetically engineered mouse models, transplantation models, patient derived organoids and radiotherapy platforms to study responses to chemoradiotherapy. Relevant literature was identified through the PubMed and MEDLINE databases, using the following keywords rectal cancer; mouse models; organoids; neo-adjuvant treatment; radiotherapy; chemotherapy. By delineating the advantages and disadvantages of available models, we discuss how modelling techniques can be utilized to address current research priorities in locally advanced rectal cancer. We provide unique insight into the potential application of pre-clinical models in the development of novel neo-adjuvant treatment strategies, which will hopefully guide future clinical trials.The first year of the coronavirus disease 2019 (COVID-19) pandemic has been a year of unprecedented changes, scientific breakthroughs, and controversies. The radiology community has not been spared from the challenges imposed on global healthcare systems. Radiology has played a crucial part in tackling this pandemic, either by demonstrating the manifestations of the virus and guiding patient management, or by safely handling the patients and mitigating transmission within the hospital. Major modifications involving all aspects of daily radiology practice have occurred as a result of the pandemic, including workflow alterations, volume reductions, and strict infection control strategies. Despite the ongoing challenges, considerable knowledge has been gained that will guide future innovations. The aim of this review is to provide the latest evidence on the role of imaging in the diagnosis of the multifaceted manifestations of COVID-19, and to discuss the implications of the pandemic on radiology departments globally, including infection control strategies and delays in cancer screening. Lastly, the promising contribution of artificial intelligence in the COVID-19 pandemic is explored.The role of radiology and the radiologist have evolved throughout the coronavirus disease-2019 (COVID-19) pandemic. https://www.selleckchem.com/products/apilimod.html Early on, chest computed tomography was used for screening and diagnosis of COVID-19; however, it is now indicated for high-risk patients, those with severe disease, or in areas where polymerase chain reaction testing is sparsely available. Chest radiography is now utilized mainly for monitoring disease progression in hospitalized patients showing signs of worsening clinical status. Additionally, many challenges at the operational level have been overcome within the field of radiology throughout the COVID-19 pandemic. The use of teleradiology and virtual care clinics greatly enhanced our ability to socially distance and both are likely to remain important mediums for diagnostic imaging delivery and patient care. Opportunities to better utilize of imaging for detection of extrapulmonary manifestations and complications of COVID-19 disease will continue to arise as a more detailed understanding of the pathophysiology of the virus continues to be uncovered and identification of predisposing risk factors for complication development continue to be better understood. Furthermore, unidentified advancements in areas such as standardized imaging reporting, point-of-care ultrasound, and artificial intelligence offer exciting discovery pathways that will inevitably lead to improved care for patients with COVID-19.Coronavirus disease 2019 (COVID-19) has posed a serious threat to global public health with its rapid spread, high fatality, and severe burden on health care providers all over the world. Although COVID-19 has been established as a respiratory tract infection, it can manifest with gastrointestinal symptoms as a consequence of direct infection by the virus or due to inflammation-mediated cytotoxicity. It has been observed that COVID-19 patients presenting with gastrointestinal symptoms tend to progress to a severe form of disease with increased morbidity and mortality, thus indicating the need for timely management. COVID-19 manifests with a wide spectrum of radiologic findings on gastrointestinal tract imaging, encompassing bowel abnormalities, hepato-biliary and pancreatic involvement, vascular occlusion, and solid organ infarction. Early recognition of these imaging features can facilitate timely treatment of COVID-19 associated gastrointestinal tract complications and may prompt the diagnosis of COVID-19 in patients with atypical disease manifestations. The aim of this article is to provide an overview of the various gastrointestinal imaging manifestations that can be encountered in patients with COVID-19, with an emphasis on early diagnosis of the disease as well as treatment related complications.The coronavirus disease 2019 (COVID-19) pandemic presents a significant global public health challenge. One in five individuals with COVID-19 presents with symptoms that last for weeks after hospital discharge, a condition termed "long COVID". Thus, efficient follow-up of patients is needed to assess the resolution of lung pathologies and systemic involvement. Thoracic imaging is multimodal and involves using different forms of waves to produce images of the organs within the thorax. In general, it includes chest X-ray, computed tomography, lung ultrasound and magnetic resonance imaging techniques. Such modalities have been useful in the diagnosis and prognosis of COVID-19. These tools have also allowed for the follow-up and assessment of long COVID. This review provides insights on the effectiveness of thoracic imaging techniques in the follow-up of COVID-19 survivors who had long COVID.