https://www.selleckchem.com/products/lipopolysaccharides.html https://www.selleckchem.com/products/lipopolysaccharides.html Characterisation regarding pharmacokinetics, security as well as tolerability in the first-in-human study with regard to AZD8154, a singular breathed in picky PI3Kγδ twin chemical focusing on respiratory tract -inflammatory ailment. Information about the kinetics of PCR reactions is encoded in the amplification curve. However, in digital PCR (dPCR), this information is typically neglected by collapsing each amplification curve into a binary output (positive/negative). Here, we demonstrate that the large volume of raw data obtained from real-time dPCR instruments can be exploited to perform data-driven multiplexing in a single fluorescent channel using machine learning methods, by virtue of the information in the amplification curve. This new approach, referred to as amplification curve analysis (ACA), was shown using an intercalating dye (EvaGreen), reducing the cost and complexity of the assay and enabling the use of melting curve analysis for validation. As a case study, we multiplexed 3 carbapenem-resistant genes to show the impact of this approach on global challenges such as antimicrobial resistance. In the presence of single targets, we report a classification accuracy of 99.1% (N = 16188), which represents a 19.7% increase compared to multiplexing based on the final fluorescent intensity. Considering all combinations of amplification events (including coamplifications), the accuracy was shown to be 92.9% (N = 10383). To support the analysis, we derived a formula to estimate the occurrence of coamplification in dPCR based on multivariate Poisson statistics and suggest reducing the digital occupancy in the case of multiple targets in the same digital panel. The ACA approach takes a step toward maximizing the capabilities of existing real-time dPCR instruments and chemistries, by extracting more information from data to enable data-driven m