Our approach opens new opportunities of utilizing metal-inorganic porous networks for the stabilization of highly dispersed and well-defined SACs and SCCs.Searching for multifunctional materials with tunable magnetic and optical properties has been a critical task toward the implementation of future integrated optical devices. Vertically aligned nanocomposite (VAN) thin films provide a unique platform for multifunctional material designs. Here, a new metal-oxide VAN has been designed with plasmonic Au nanopillars embedded in a ferromagnetic La0.67Sr0.33MnO3 (LSMO) matrix. https://www.selleckchem.com/products/liraglutide.html Such Au-LSMO nanocomposite presents intriguing plasmon resonance in the visible range and magnetic anisotropy property, which are functionalized by the Au and LSMO phase, respectively. Furthermore, the vertically aligned nanostructure of metal and dielectric oxide results in the hyperbolic property for near-field electromagnetic wave manipulation. Such optical and magnetic response could be further tailored by tuning the composition of Au and LSMO phases.The 3D orientation of a single gold nanoparticle is probed experimentally by light scattering polarimetry. We choose high-quality gold bipyramids (AuBPs) that support around 700 nm a well-defined narrow longitudinal localized surface plasmonic resonance (LSPR) which can be considered as a linear radiating dipole. A specific spectroscopic dark-field technique was used to control the collection angles of the scattered light. The in-plane as well as the out-of-plane angles are determined by analyzing the polarization of the scattered radiation. The data are compared with a previously developed model where the environment and the angular collection both play crucial roles. We show that most of the single AuBPs present an out-of-plane orientation consistent with their geometry. Finally, the fundamental role of the collection angles on the determination of the orientation is investigated for the first time. Several features are then deduced we validate the choice of the analytical 1D model, an accurate 3D orientation is obtained, and the critical contribution of the evanescent waves is highlighted.Enhancing the gating performance of single-molecule conductance is significant for realizing molecular transistors. Herein, we report a new strategy to improve the electrochemical gating efficiency of single-molecule conductance with fused molecular structures consisting of heterocyclic rings of furan, thiophene, or selenophene. One order magnitude of gating ratio is achieved within a potential window of 1.2 V for the selenophene-based molecule, which is significantly greater than that of other heterocyclic and benzene ring molecules. This is caused by the different electronic structures of heterocyclic molecules and transmission coefficients T(E), and preliminary resonance tunneling is achieved through the highest occupied molecular orbital at high potential. The current work experimentally shows that electrochemical gating performance can be significantly modulated by the alignment of the conducting orbital of the heterocyclic molecule relative to the metal Fermi energy.The previously predicted phagraphene [Wang et al., Nano Lett. 15, 6182 (2015)] and a recently proposed TPH-graphene have been synthesized from fusion of 2,6-polyazulene chain (5-7 chain) in a recent experiment [Fan et al., J. Am. Chem. Soc., 141, 17713 (2019)]. Theoretically, phagraphene and TPH-graphene can be considered as the combinations of the 5-7 chains with distinct 6-6-6 and 4-7-7 interfacial stacking manners, respectively. In this work, we propose another new graphene allotrope, named as penta-hex-hepta-graphene (PHH-graphene), which can be constructed by coupling the synthesized 5-7 chains with a new type of 5-7-6 stacking interface. It is found that the PHH-graphene is dynamically and thermally stable, and especially notable, the total energy of PHH-graphene is lower than that of synthesized TPH-graphene. Thus, it is highly possible that PHH-graphene can be realized through assembly of 5-7 chains. We have systematically investigated the electronic properties of these three graphene allotropes and their nanoribbons. The results show that PHH-graphene is a type-I semimetal with a highly anisotropic Dirac cone similar to phagraphene, while TPH-graphene is a metal. Their nanoribbons exhibit different electronic band structures as the number (n) of 5-7 chains increases. For TPH-graphene nanoribbons, they become metal rapidly as n ≥ 2. The nanoribbons of the semimetallic phagraphene and PHH-graphene are narrow band gap semiconductors with gaps decreasing as n increases, which are similar to the graphene nanoribbons. We also find that the band gaps of PHH-graphene nanoribbons exhibit two distinct families with n = 2i and n = 2i + 1, which can be understood by the width-dependent symmetries of the system.Direct dynamics simulations with the M06/6-311++G(d,p) level of theory were performed to study the 3CH2 + 3O2 reaction at 1000 K temperature on the ground state singlet surface. The reaction is complex with formation of many different product channels in highly exothermic reactions. CO, CO2, H2O, OH, H2, O, H, and HCO are the products formed from the reaction. The total simulation rate constant for the reaction at 1000 K is (1.2 ± 0.3) × 10-12 cm3 molecule-1 s-1, while the simulation rate constant at 300 K is (0.96 ± 0.28) × 10-12 cm3 molecule-1 s-1. The simulated product yields show that CO is the dominant product and the COCO2 ratio is 5.31, in good comparison with the experimental ratio of 4.31 at 1000 K. On comparing the product yields for the 300 and 1000 K simulations, we observed that, except for CO and H2O, the yields of the other products at 1000 K are lower at 300 K, showing a negative temperature dependence.Simulations of electronically nonadiabatic processes may employ either the adiabatic or diabatic representation. Direct dynamics calculations are usually carried out in the adiabatic basis because the energy, force, and state coupling can be evaluated directly by many electronic structure methods. However, although its straightforwardness is appealing, direct dynamics is expensive when combined with quantitatively accurate electronic structure theories. This generates interest in analytically fitted surfaces to cut the expense, but the cuspidal ridges of the potentials and the singularities and vector nature of the couplings at high-dimensional, nonsymmetry-determined intersections in the adiabatic representation make accurate fitting almost impossible. This motivates using diabatic representations, where the surfaces are smooth and the couplings are also smooth and-importantly-scalar. In a recent previous work, we have developed a method called diabatization by deep neural network (DDNN) that takes advantage of the smoothness and nonuniqueness of diabatic bases to obtain them by machine learning.