https://www.selleckchem.com/products/talabostat.html The upstream regulator analysis demonstrated that the aryl hydrocarbon receptor (AHR) signaling pathway was the upstream regulator of the neuroinflammation signaling pathway (11.76% overlap with upstream regulators, |Z-score|=1.451). Therefore, AHR activation was recognized as the first key event (KE1) in the MOA framework. The following downstream molecular and cellular key events were also identified. The pathway-based MOA framework of Pb-induced neurotoxicity was built starting with AHR activation, followed by an inflammatory response and neuron apoptosis. Our toxicity pathway-based approach not only advances the development of risk assessment for Pb-induced neurotoxicity but also brings new insights into constructing MOA frameworks of risk assessment for new chemicals. Our toxicity pathway-based approach not only advances the development of risk assessment for Pb-induced neurotoxicity but also brings new insights into constructing MOA frameworks of risk assessment for new chemicals.In this study we investigated the independent and synergistic effects of lithium (Li, 0.08 mM) contamination and the rising seawater temperature (21 °C; control- 15 °C) on survival and trophic interactions (foraging behaviour, success, search time, carrion preference, feeding time, and tissue consumption-the dry weight basis) of the opportunistic intertidal scavenger Tritia neritea. Trophic interactions were assessed in a two-choice test using a Y-maze design using the same amount of two carrion species (Solen marginatus and Mytilus galloprovincialis) given to all snails simultaneously. Lithium pollution and synergestic warming have the effect of reducing the survival rate of T. neritea, triggering potential global change scenarios. The foraging behaviour of T. neritea under Li-contaminated conditions was characterised by a decrease in the snail's effectiveness in finding a carrion. Lithium changes the feeding behaviour as well as i