https://www.selleckchem.com/products/XAV-939.html Drug-induced liver injury (DILI) presentation varies biochemically and histologically. Certain drugs present quite consistent injury patterns, i.e., DILI signatures. In contrast, others are manifested as broader types of liver injury. The variety of DILI presentations by a single drug suggests that both drugs and host factors may contribute to the phenotype. However, factors determining the DILI types have not been yet elucidated. Identifying such factors may help to accurately predict the injury types based on drugs and host information and assist the clinical diagnosis of DILI. Using prospective DILI registry datasets, we sought to explore and validate the associations of biochemical injury types at the time of DILI recognition with comprehensive information on drug properties and host factors. Random forest models identified a set of drug properties and host factors that differentiate hepatocellular from cholestatic damage with reasonable accuracy (69-84%). A simplified logistic regression model developed for practical use, consisting of patient's age, drug's lipoaffinity, and hybridization ratio, achieved a fair prediction (68-74%), but suggested potential clinical usability, computing the likelihood of liver injury type based on two properties of drugs taken by a patient and patient's age. In summary, considering both drug and host factors in evaluating DILI risk and phenotypes open an avenue for future DILI research and aid in the refinement of causality assessment.The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some