https://www.selleckchem.com/products/mi-773-sar405838.html At 28-d post-exposure, the gene expression pattern was reversed with more than 85% of genes in the ipsilateral IC now downregulated. Most genes previously downregulated in the contralateral IC 2-d post-exposure had recovered; less than 15% remained downregulated. These time-dependent, asymmetric changes in synaptic plasticity gene expression could shed new light on the perceptual deficits associated with unilateral hearing loss and the dynamic structural and functional changes that occur in the IC days and months following unilateral noise-induced hearing loss. The application of nanoparticles (NPs) as radio-sensitizers and carriers has opened up a new horizon to overcome the limitations of chemo and radiotherapy. In this study, bovine serum albumin-coated Bi2S3 NPs (Bi2S3@BSA NPs) were synthesized and evaluated in terms of their ability to be used as a radio-sensitizer and carrier for methotrexate (MTX). Physicochemical properties of MTX conjugated Bi2S3@BSA NPs (Bi2S3@BSA-MTX NPs) were characterized by DLS, TEM, FTIR, UV/Vis, and XRD analyses. After the evaluation of cellular uptake and intracellular localization, the cytotoxicity of the combination of Bi2S3@BSA-MTX NPs and X-Ray radiation was analyzed against the SW480 cell line. The synthesized NPs exhibited spherical-like shapes and homogenous morphology, possessing a hydrodynamic diameter of 140.2 ± 5.71 nm (mean ± SD) and zeta potential of -25 mV. Also, the release study showed that the release of MTX is faster and higher in the presence of the proteinase K enzyme than the absence of the enzyme. The results of in-vitro chemo-radiation therapy indicated that the viability of treated cells with Bi2S3@BSA-MTX NPs is significantly lower than the cells treated with Bi2S3@BSA NPs. Furthermore, cells treated with Bi2S3@BSA-MTX NPs showed a lower degree of viability when combined with X-Ray radiation in comparison with the absence of irradiation, which confir