Predicting the final ischaemic stroke lesion provides crucial information regarding the volume of salvageable hypoperfused tissue, which helps physicians in the difficult decision-making process of treatment planning and intervention. Treatment selection is influenced by clinical diagnosis, which requires delineating the stroke lesion, as well as characterising cerebral blood flow dynamics using neuroimaging acquisitions. Nonetheless, predicting the final stroke lesion is an intricate task, due to the variability in lesion size, shape, location and the underlying cerebral haemodynamic processes that occur after the ischaemic stroke takes place. Moreover, since elapsed time between stroke and treatment is related to the loss of brain tissue, assessing and predicting the final stroke lesion needs to be performed in a short period of time, which makes the task even more complex. Therefore, there is a need for automatic methods that predict the final stroke lesion and support physicians in the treatment decision process. We propose a fully automatic deep learning method based on unsupervised and supervised learning to predict the final stroke lesion after 90 days. Our aim is to predict the final stroke lesion location and extent, taking into account the underlying cerebral blood flow dynamics that can influence the prediction. To achieve this, we propose a two-branch Restricted Boltzmann Machine, which provides specialized data-driven features from different sets of standard parametric Magnetic Resonance Imaging maps. These data-driven feature maps are then combined with the parametric Magnetic Resonance Imaging maps, and fed to a Convolutional and Recurrent Neural Network architecture. We evaluated our proposal on the publicly available ISLES 2017 testing dataset, reaching a Dice score of 0.38, Hausdorff Distance of 29.21 mm, and Average Symmetric Surface Distance of 5.52 mm.Automatic and accurate segmentation of dental models is a fundamental task in computer-aided dentistry. Previous methods can achieve satisfactory segmentation results on normal dental models; however, they fail to robustly handle challenging clinical cases such as dental models with missing, crowding, or misaligned teeth before orthodontic treatments. In this paper, we propose a novel end-to-end learning-based method, called TSegNet, for robust and efficient tooth segmentation on 3D scanned point cloud data of dental models. Our algorithm detects all the teeth using a distance-aware tooth centroid voting scheme in the first stage, which ensures the accurate localization of tooth objects even with irregular positions on abnormal dental models. Then, a confidence-aware cascade segmentation module in the second stage is designed to segment each individual tooth and resolve ambiguities caused by aforementioned challenging cases. We evaluated our method on a large-scale real-world dataset consisting of dental models scanned before or after orthodontic treatments. https://www.selleckchem.com/ Extensive evaluations, ablation studies and comparisons demonstrate that our method can generate accurate tooth labels robustly in various challenging cases and significantly outperforms state-of-the-art approaches by 6.5% of Dice Coefficient, 3.0% of F1 score in term of accuracy, while achieving 20 times speedup of computational time.The antimicrobial residues of aquacultural production is a growing public concern, leading to reexamine the method for establishing robust withdrawal time and ensuring food safety. Our study aims to develop the optimizing population physiologically-based pharmacokinetic (PBPK) model for assessing florfenicol residues in the tilapia tissues, and for evaluating the robustness of the withdrawal time (WT). Fitting with published pharmacokinetic profiles that experimented under temperatures of 22 and 28 °C, a PBPK model was constructed by applying with the Bayesian Markov chain Monte Carol (MCMC) algorithm to estimate WTs under different physiological, environmental and dosing scenarios. Results show that the MCMC algorithm improves the estimates of uncertainty and variability of PBPK-related parameters, and optimizes the simulation of the PBPK model. It is noteworthy that posterior sets generated from temperature-associated datasets to be respectively used for simulating residues under corresponding temperature conditions. Simulating the residues under regulated regimen and overdosing scenarios for Taiwan, the estimated WTs were 12-16 days at 22 °C and 9-12 days at 28 °C, while for the USA, the estimated WTs were 14-18 and 11-14 days, respectively. Comparison with the regulated WT of 15 days, results indicate that the current WT has well robustness and resilience in the environment of higher temperatures. The optimal Bayesian population PBPK model provides effective analysis for determining WTs under scenario-specific conditions. It is a new insight into the increasing body of literature on developing the Bayesian-PBPK model and has practical implications for improving the regulation of food safety.A novel composite electrospun fiber with high photocatalytic efficiency, good stability, strong hydrophobicity, good pollution resistance, and easy separation and recovery was synthesized. The TiO2@g-C3N4 (TCN) with special core-shell structure (5-10 nm shell) facilitated the separation of photogenerated electron-holes and had high photocatalytic performance. The poly (vinylidene fluoride) (PVDF) electrospun fiber immobilized with TCN was successfully fabricated (PVDF-TCN) with uniform distribution and size of nanofibers by using electrospinning, which was used for degrading tetracycline under visible-light irradiation (> 400 nm). A special rougher surface of electrospun fiber obtained by washing of sacrificial PVP increased the specific surface area, which became more conducive to the adhesion of the catalyst. The water contact angle and FTIR results demonstrated that the electrospun fiber became extremely hydrophilic after adding TCN catalyst, which could effectively mitigate the fiber pollution. The PVDF-TCN-0.2g electrospun fiber exhibited excellent photocatalytic performance and the degradation efficiency of tetracycline was up to 97% in 300 min under visible-light irradiation. The mechanism of PVDF-TCN electrospun fiber degradation of tetracycline in the photocatalytic process was also proposed. In addition, the PVDF-TCN-0.2g exhibited a stable activity after 4 cycles experiments since the degradation efficiency remained about 90%. Therefore, we believed this study provided a new strategy in catalyst immobilization and wastewater treatment.