https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html The results of flotation tests showed that CEA can selectively separate fluorite and calcite from scheelite at pH 7. The promising selectivity of CEA lies in both the electrical properties and the anions' hydrogen bonding ability with the three calcium minerals. The negatively charged scheelite surfaces are not conducive to coordination bonding with CEA while the positively charged fluorite and calcite surfaces are. Besides, the hydrogen bonding ability of fluorite (F-) and calcite (CO32-) with carbamido in CEA is higher than that of scheelite (WO42-), and this also plays an essential role. This coordination and hydrogen bonding based surfactant design protocol has a great potential in the development of tail-made collectors/depressants for the separation of other oxidized minerals.Hyperbranched molecules are a kind of promising materials due to their unique structures. In this work, two hyperbranched molecules (GON and GOH) are used as effective inhibitors for Al alloys in NaCl solution. Their inhibitive performances are evaluated by electrochemical measurements and surface characterization. The results indicate that inhibition performances of GON and GOH are closely related to the concentrations, influenced by the combination of steric hindrance and bonding effects. At relatively low concentrations (0.03-0.10 mM), GON displays a more pronounced ability to inhibit corrosion than GOH, owing to more anchoring functional groups. Oppositely, GOH has good inhibition performance at higher concentrations (0.50-1.00 mM). The interaction between the Al electrode and GOH results in the formation of a more condenser protective film than GON at high concentrations. In addition, the adsorption mechanism of two hyperbranched molecules is revealed by theoretical calculations. Sustained partnerships that strengthen and expand nursing's contribution to the integration of academic nursing into clinical practice hold