https://www.selleckchem.com/btk.html Biomass conditioner made from agricultural and animal husbandry waste for resource disposal could be used to improve desertified soil, which is one of the effective ways of ecological management on desertified grasslands in northwest Sichuan. To clarify the effects of different raw material conditioners on alpine desertified grassland in northwest Sichuan, we analyzed the effects of three conditioners on soil nutrients and microbial community characteristics. With no conditioner as the control (CK), three different biomass conditioners were set up with an application rate of 12 t·hm-2, including mushroom dregs (JZ), straw (JG) and biochar (SWT). The results showed that all biomass conditioners could significantly increase soil available nutrients and active organic carbon by 23.0%-521.6%. Among the three conditioners, JG had the best effect, with an improvement range for soil nutrient and organic carbon of 65.1%-521.6%. Because biomass conditioner was only applied in the first year, soil available nutrients a a greater impact on fungal community composition, explaining 83.2% of community variation. According to the comprehensive comparison, straw conditioner could significantly increase soil available nutrients and active organic carbon, and benefit the growth of beneficial bacteria and fungi, which could be used as a promotion measure to improve soil quality of alpine desertified grassland in northwest Sichuan.The abundance of denitrifying functional genes plays a key role in driving the soil nitrous oxide (N2O) emission potential. Nitrite reductase genes (nirK and nirS) and nitrous oxide reductase genes (nosZ I and nosZ II) are the dominant denitrifying funtional genes. In this study, real-time quantitative PCR was conducted to evaluate the effects of 32-year imbalanced fertilization and lime and gypsum additions on the abundances of nirK, nirS, nosZ I and nosZ II genes in an Ultisol at Yingtan, Jiangxi Province. We further exp