Self-assessment was an effective way to assess student writing development. https://www.selleckchem.com/products/sj6986.html Items not meeting the performance benchmark may illuminate the need for further writing development. Faculty recommendations for using self-assessment and facilitating writing development are offered. Self-assessment was an effective way to assess student writing development. Items not meeting the performance benchmark may illuminate the need for further writing development. Faculty recommendations for using self-assessment and facilitating writing development are offered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread rapidly in nursing homes and long-term care (LTC) facilities. Symptoms-based screening and manual contact tracing have limitations that render them ineffective for containing the viral spread in LTC facilities. Symptoms-based screening alone cannot identify asymptomatic people who are infected, and the viral spread is too fast in confined living quarters to be contained by slow manual contact tracing processes. We describe the development of a digital contact tracing system that LTC facilities can use to rapidly identify and contain asymptomatic and symptomatic SARS-CoV-2 infected contacts. A compartmental model was also developed to simulate disease transmission dynamics and to assess system performance versus conventional methods. We developed a compartmental model parameterized specifically to assess the coronavirus disease (COVID-19) transmission in LTC facilities. The model was used to quantify the impact of asymptomatic transmive tool to control COVID-19 outbreaks in LTC facilities. As facilities prepare to relax restrictions and reopen to outside visitors, such tools will allow them to do so in a surgical, cost-effective manner that controls outbreaks while safely giving residents back the life they once had before this pandemic hit.In the context of motor imagery, electroencephalography (EEG) data vary from subject to subject such that the performance of a classifier trained on data of multiple subjects from a specific domain typically degrades when applied to a different subject. While collecting enough samples from each subject would address this issue, it is often too time-consuming and impractical. To tackle this problem, we propose a novel end-to-end deep domain adaptation method to improve the classification performance on a single subject (target domain) by taking the useful information from multiple subjects (source domain) into consideration. Especially, the proposed method jointly optimizes three modules, including a feature extractor, a classifier, and a domain discriminator. The feature extractor learns the discriminative latent features by mapping the raw EEG signals into a deep representation space. A center loss is further employed to constrain an invariant feature space and reduce the intrasubject nonstationarity. Furthermore, the domain discriminator matches the feature distribution shift between source and target domains by an adversarial learning strategy. Finally, based on the consistent deep features from both domains, the classifier is able to leverage the information from the source domain and accurately predict the label in the target domain at the test time. To evaluate our method, we have conducted extensive experiments on two real public EEG data sets, data set IIa, and data set IIb of brain-computer interface (BCI) Competition IV. The experimental results validate the efficacy of our method. Therefore, our method is promising to reduce the calibration time for the use of BCI and promote the development of BCI.An algorithm is proposed to determine output feedback policies that solve finite-horizon linear-quadratic (LQ) optimal control problems without requiring knowledge of the system dynamical matrices. To reach this goal, the Q-factors arising from finite-horizon LQ problems are first characterized in the state feedback case. It is then shown how they can be parameterized as functions of the input-output vectors. A procedure is then proposed for estimating these functions from input/output data and using these estimates for computing the optimal control via the measured inputs and outputs.Constrained spectral clustering (SC) based on pairwise constraint propagation has attracted much attention due to the good performance. All the existing methods could be generally cast as the following two steps, i.e., a small number of pairwise constraints are first propagated to the whole data under the guidance of a predefined affinity matrix, and the affinity matrix is then refined in accordance with the resulting propagation and finally adopted for SC. Such a stepwise manner, however, overlooks the fact that the two steps indeed depend on each other, i.e., the two steps form a ``chicken-egg'' problem, leading to suboptimal performance. To this end, we propose a joint PCP model for constrained SC by simultaneously learning a propagation matrix and an affinity matrix. Especially, it is formulated as a bounded symmetric graph regularized low-rank matrix completion problem. We also show that the optimized affinity matrix by our model exhibits an ideal appearance under some conditions. Extensive experimental results in terms of constrained SC, semisupervised classification, and propagation behavior validate the superior performance of our model compared with state-of-the-art methods.This article focuses on the observer-based quasi-synchronization problem of delayed dynamical networks with parameter mismatch under impulsive effect. First, since the state of each node is unknown in the real situation, the state estimation strategy is proposed to estimate the state of each node, so as to design an appropriate synchronization controller. Then, the corresponding controller is constructed to synchronize the slave nodes with their leader node. In this article, we take the impulsive effect into consideration, which means that an impulsive signal will be applied to the system every so often. Due to the existence of parameter mismatch and time-varying delay, by constructing an appropriate Lyapunouv function, we will eventually obtain a differential equation with constant and time-varying delay terms. Then, we analyze its trajectory by introducing the Cauchy matrix and prove its boundedness by contradiction. Finally, a numerical simulation is presented to illustrate the validness of obtained results.