This work presents quantum chemical G3(MP2,CC)//B2PLYPD3/6-311G(d,p) calculations of the potential energy surface for the indenyl (C9H7) + cyclopentadienyl (C5H5) reaction followed by unimolecular decomposition of the C14H11 radicals formed as the primary products, as well as the Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations to predict temperature- and pressure-dependent reaction rate constants and product branching ratios. The reaction begins with the barrierless recombination of indenyl and cyclopentadienyl forming a C14H12 molecule with a new C-C bond connecting two five-membered rings, which subsequently dissociates to C14H11 radicals by H losses. The primary products of the C9H7 + C5H5 → C14H11 + H reaction can directly decompose by another H loss to benzofulvalene, and this pathway is most favorable in terms of the entropy factor and hence is preferable at higher temperatures. Otherwise, the initial C14H11 isomers can undergo significant structural rearrangements before eliminatinto involve two consecutive H atom losses leading to a fulvalene-like product, with subsequent H-assisted isomerization of the latter to a benzenoid PAH.Aromatic aldehydes elicit their antisickling effects primarily by increasing the affinity of hemoglobin (Hb) for oxygen (O2). However, challenges related to weak potency and poor pharmacokinetic properties have hampered their development to treat sickle cell disease (SCD). Herein, we report our efforts to enhance the pharmacological profile of our previously reported compounds. These compounds showed enhanced effects on Hb modification, Hb-O2 affinity, and sickling inhibition, with sustained pharmacological effects in vitro. Importantly, some compounds exhibited unusually high antisickling activity despite moderate effects on the Hb-O2 affinity, which we attribute to an O2-independent antisickling activity, in addition to the O2-dependent activity. Structural studies are consistent with our hypothesis, which revealed the compounds interacting strongly with the polymer-stabilizing αF-helix could potentially weaken the polymer. In vivo studies with wild-type mice demonstrated significant pharmacologic effects. Our structure-based efforts have identified promising leads to be developed as novel therapeutic agents for SCD.A 1,3-sulfonyl migration of difluorovinyl sulfonates initiated by a catalytic amount of silver fluoride is presented. α,α-Difluoro-β-ketosulfones were successfully prepared in excellent yields. This method features high chemoselectivity, good functional group tolerance, high atom economy, and mild, environmentally benign reaction conditions. Furthermore, mechanistic experiments indicate that this migration proceeds in an intermolecular pathway and the corresponding sulfinates are possible intermediates.Raman multivariate curve resolution vibrational spectroscopy and X-ray crystallography are used to quantify changes in the gauche-trans conformational equilibrium of 1-bromopropane (1-BP) upon binding to α-cyclodextrin (α-CD). Both conformers of 1-BP are found to bind to α-CD, although binding favors the unfolded trans conformation. https://www.selleckchem.com/products/colcemid.html Temperature-dependent measurements of the binding-induced change in the 1-BP conformation equilibrium constant indicate that the trans conformer is both enthalpically and entropically stabilized in the host cavity.We show that adapting the knowledge developed for the disordered Mott-Hubbard model to nanoparticle (NP) solids can deliver many very helpful new insights. We developed a hierarchical nanoparticle transport simulator (HINTS), which builds from localized states to describe the disorder-localized and Mott-localized phases of NP solids and the transitions out of these localized phases. We also studied the interplay between correlations and disorder in the corresponding multiorbital Hubbard model at and away from integer filling by dynamical mean field theory. This DMFT approach is complementary to HINTS, as it builds from the metallic phase of the NP solid. The mobility scenarios produced by the two methods are strikingly similar and account for the mobilities measured in NP solids. We conclude this work by constructing the comprehensive phase diagram of PbSe NP solids on the disorder-filling plane.Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.Zero-dimensional perovskite nanocrystals (NCs) are becoming the most attractive material due to their excellent optical performance and better stability compared with high-dimensional perovskite. However, their application in electroluminescent (EL) emitters for high-quality displays is still limited. In this work, we successfully achieved CsPbBr3@Cs4PbBr6 NCs around 13.9 ± 0.2 nm by using the hot-injection method. Additional SnBr2 was mixed in the PbBr2 precursor to provide extra Br- ions and reduce the excessive amount of Pb2+ ions to promote the formation of CsPbBr3@Cs4PbBr6. Time resolution photoluminescence analysis indicated that the green emission of our CsPbBr3@Cs4PbBr6 NCs originated from the embedded CsPbBr3 NCs, which corresponds to our previous research. The Cs4PbBr6 crystals passivated the surface of CsPbBr3 NCs, resulting in the absence of trions for the high photoluminescence quantum yield. The as-synthesized CsPbBr3@Cs4PbBr6 NCs were used to fabricate quantum dot light-emitting diode (QLED) devices with the highest current efficiency of 4.