We evaluated the associations of serum insulin-like growth factor-1 (IGF-1) with bone mineral density (BMD) and risk of fractures in Chinese patients with type 2 diabetes (T2D). We found positive associations between IGF-I and BMD and negative associations between IGF-I and all three modified 10-year probabilities of MOFs and HFs in men, but not in women. The objective was to investigate the associations of serum insulin-like growth factor-1 (IGF-1) with bone mineral density (BMD) and risk of fractures in Chinese patients with type 2 diabetes (T2D) in each gender. This was a cross-sectional, retrospective study that included men over 50 years and postmenopausal women with T2D without medical conditions or medications known to significantly affect BMD or serum IGF-I levels. Data of IGF-1, bone metabolism markers, lumbar spine (LS), femoral neck (FN), and total hip (TH) BMD were obtained; 10-year probability of major osteoporotic fractures (MOFs) and hip fractures (HFs) was calculated and modified with rheumT-score-modified HFs r = - 0.270, p < 0.001), while no significant correlations were found between serum IGF-I and BMD and three modified 10-year probability in women. According to this study, we found sex differences in the associations of serum IGF-1 with BMD and risk of fractures in Chinese patients with T2D. These results suggested that increasing serum IGF-1 might be a clinical target for protecting fractures in T2D, especially in men. According to this study, we found sex differences in the associations of serum IGF-1 with BMD and risk of fractures in Chinese patients with T2D. These results suggested that increasing serum IGF-1 might be a clinical target for protecting fractures in T2D, especially in men.Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlati.Blowfly (Diptera Calliphoridae) species Lucilia sericata (Meigen) and related species Lucilia cuprina (Wiedmann) are important agricultural pests, assist in forensic fields and also have a therapeutic role in medicine. Both species (though predominantly L. sericata) are utilised in a clinical setting for maggot debridement therapy (MDT) where the larvae ingest necrotic tissue and bacteria from non-healing wounds. Conversely, larvae of L. cuprina feed invasively, as major initiators of sheep myiasis in Australia, New Zealand, and the UK, among other regions. Both species exhibit larval and adult interactions with bacterially rich environments, but the significance of this in the composition of their microbiome has yet to be considered. This study utilised dissected samples of digestive and reproductive organs from both disinfected and non-disinfected adults and larvae of both species for bacterial DNA extraction, followed by 16S rRNA gene sequencing. Sequencing data indicated unsurprisingly that digestive tracts of both genders and female salivary glands from all non-disinfected samples carry the most concentrated amounts of bacteria. Genera Pseudomonas and Corynebacterium were also highly represented within all organs and species analysed. Comparison of bait lures to sample sequence read output of insect specimens showed no correlation with genera such as Pseudomonas present in insects, while absent from wild bait, and in reduced amounts from fleece bait profiles. With this information, future work can focus on key organs such as the spermathecae and salivary glands, while also providing the potential to identify the role these bacteria may play in the blowfly life cycle. KEY POINTS Genera Pseudomonas appears consistently in the microbiome of Lucilia species. Female spermathecae and salivary glands show the highest microbial diversity. Bacterial profiles of L. sericata and L. cuprina have similar composition.Paramylon also called β-1,3-glucan is a value-added product produced from Euglena gracilis. https://www.selleckchem.com/products/protac-tubulin-degrader-1.html Recently, researchers have developed various strategies for the enhanced paramylon production, among which electrical treatment for microbial stimulation can be an alternative owing to the applicability to large-scale cultivation. In this study, we applied the electrical treatment for enhanced paramylon production and found the proper treatment conditions. Under the treatment with platinum electrodes at 10 mA, the paramylon production of treated cells was significantly increased about 2.5-fold, compared to those of the untreated cells, although the density of cells was maintained due to considerable stress. The size of treated cells became larger, possibly due to the increased level of paramylon production within the cells. Accordingly, the contents of glucose uptake, glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), and uridine diphosphoglucose (UDPG) were shifted to appropriate states for the process of paramylon synthesis under the treatment. The increased level of transcripts encoding glucan synthase-like 2 (EgGSL2) was also confirmed via droplet digital PCR (ddPCR) under the treatment. Overall, this study makes a major contribution to research on electrical stimulation and provides new insights into E. gracilis metabolism like paramylon synthesis. KEY POINTS • Electrical treatment induced the paramylon production and morphological change of Euglena gracilis. • The glucose uptake of E. gracilis was increased during the electrical treatment, fueling the paramylon synthesis.