CONCLUSION The mechanism observed on the involved side differs from that in controls, but is comparable to the mechanisms used by subjects with transtibial amputation reported in the literature. However, compensatory movements on the sound side take place at the ankle and knee joint, differing from subjects with more proximal amputations. CLINICAL RELEVANCE This study underpins the importance of adequate foot leverage and ankle function in cases of partial foot amputation, particularly in transfer situations such as stair ascent. If ankle range of motion is adequate, prosthetic/orthotic devices combining shank leverage with a hinged spring mechanism at the ankle may be promising.Typically developing siblings of a child with autism spectrum disorder may show mental health difficulties. A support group is one approach to help typically developing siblings. During support groups, typically developing siblings discuss their feelings, learn coping strategies and problem-solving skills, and develop a peer network. We compared a support group to participation in a similar group without a focus on the sibling with autism spectrum disorder. Some areas of mental health improved. Improvements were also impacted by autism spectrum disorder symptom severity in the sibling with autism spectrum disorder. Findings suggest continuing to examine how support groups can help typically developing siblings and for which siblings support groups might be particularly effective.Sparsity is a powerful concept to exploit for high-dimensional machine learning and associated representational and computational efficiency. https://www.selleckchem.com/products/sw033291.html Sparsity is well suited for medical image segmentation. We present a selection of techniques that incorporate sparsity, including strategies based on dictionary learning and deep learning, that are aimed at medical image segmentation and related quantification. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 22 is June 4, 2020. Please see http//www.annualreviews.org/page/journal/pubdates for revised estimates.The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 11 is June 8, 2020. Please see http//www.annualreviews.org/page/journal/pubdates for revised estimates.Fluid-solid systems play a major role in a wide variety of industries, from pharmaceutical and consumer goods to chemical plants and energy generation. Along with this variety of fields comes a diversity in apparatuses and applications, most prominently fluidized and spouted beds, granulators and mixers, pneumatic conveying, drying, agglomeration, coating, and combustion. The most promising approach for modeling the flow in these systems is the CFD-DEM method, coupling computational fluid dynamics (CFD) for the fluid phase and the discrete element method (DEM) for the particles. This article reviews the progress in modeling particle-fluid flows with the CFD-DEM method. A brief overview of the basic method as well as methodical extensions of it are given. Recent applications of this simulation approach to separation and classification units, fluidized beds for both particle formation and energy conversion, comminution units, filtration, and bioreactors are reviewed. Future trends are identified and discussed regarding their viability. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 11 is June 8, 2020. Please see http//www.annualreviews.org/page/journal/pubdates for revised estimates.Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell-cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 11 is June 8, 2020. Please see http//www.annualreviews.org/page/journal/pubdates for revised estimates.