https://www.selleckchem.com/products/isoxazole-9-isx-9.html The multiple testing problem arises not only when there are many voxels or vertices in an image representation of the brain, but also when multiple contrasts of parameter estimates (that represent hypotheses) are tested in the same general linear model. We argue that a correction for this multiplicity must be performed to avoid excess of false positives. Various methods for correction have been proposed in the literature, but few have been applied to brain imaging. Here we discuss and compare different methods to make such correction in different scenarios, showing that one classical and well known method is invalid, and argue that permutation is the best option to perform such correction due to its exactness and flexibility to handle a variety of common imaging situations. Development of medications selective for dopamine D2 or D3 receptors is an active area of research in numerous neuropsychiatric disorders including addiction and Parkinson's disease. The positron emission tomography (PET) radiotracer [11C]-(+)-PHNO, an agonist that binds with high affinity to both D2 and D3 receptors, has been used to estimate relative receptor subtype occupancy by drugs based on a priori knowledge of regional variation in the expression of D2 and D3 receptors. The objective of this work was to use a data-driven independent component analysis (ICA) of receptor blocking scans to separate D2-and D3-related signal in [11C]-(+)-PHNO binding data in order to improve the precision of subtype specific measurements of binding and occupancy. Eight healthy volunteers underwent [11C]-(+)-PHNO PET scans at baseline and at two time points following administration of the D3-preferring antagonist ABT-728 (150-1000 mg). Parametric binding potential (BPND) images were analyzed as four-dimensional image series using ICA to extract two independent sources of variation in [11C]-(+)-PHNO BPND. Spatial source maps for each component were cons