https://www.selleckchem.com/products/VX-765.html In this study, microparticles of bionanomaterials were obtained by polyvinylpyrrolidone, montmoril-lonite, and zinc oxide bionanosystems produced through solution intercalation technique combined with a spray-drying process, aiming for possible application as drug delivery systems. The final microparticles obtained were evaluated in terms of their production yield, which varies between 39.2% and 56.9%. Thermal analysis showed no major changes in Tg of the nanocomposites, compared to the pure PVP polymer. Scanning electron microscopy analysis revealed a pseudo-spherical shape and confirmed the micrometric size of the microparticles. Transmission electron microscopy analysis corroborated the embedding of montmorillonite and ZnO within the polymer phase. Nuclear magnetic resonance and X-rays diffraction were used to study the nanoparticles dispersion, indicating a predominant intercalated morphology. This study suggests that the applied methodology is suitable for the high yields synthesis of nanocomposites PVP based microparticles with uniform size and shape, which can be promising for the production of a new drug delivery system.A facile and peculiar synthesis strategy is designed for the fabrication of transparent superhydrophobic surfaces on simple glass substrate. The synthesis methodology comprises of two steps of hydrothermal treatment of cleaned glass substrate with ultrapure water as a solvent followed by coating of 1H, 1H, 2H, 2H-perflourooctyltriethoxysilane (POTS) also by hydrothermal treatment in hydrothermal reactor. The hydrothermal treatment of glass substrate lead to the nanostructured surface morphology consisting of nanofibers and a blend of nanofibers/nanoflakes. Aforesaid nanostructured surface morphology upon hydrophobic coating resulted in superhydrophobic properties, increasing the water contact angle (WCA) from 92.0° to as high as 145.3°. Moreover, the developed synthesis approach also resulted i