https://www.selleckchem.com/products/mk-28.html The emerging torque teno virus (TTV) has been identified as a biohazard marker of anthropocentric pollution and contamination in drinking water, natural water and wastewater systems (DWNWWS). Therefore, this study aimed at assessing prevalence of TTV in DWNWWS. The study systematically identified and meta-analyzed published studies on TTV prevalence in DWNWWS hosted in Dimensions, Google Scholar, PubMed, Web of Science, and Scopus databases using a random-effects model and mixed-effects meta-regression model for sensitivity analysis. Furthermore, the meta-analysis was stratified to estimate water type-specific TTV prevalence. The study found a total of 58 articles, of which 13 articles subdivided into 31 studies with 374 TTV positive cases and 862 total sample sizes were systematically reviewed and meta-analyzed. The pooled prevalence of TTV in DWNWWS was 37.18% (95%CI 23.76-55.55%). Prevalence of TTV was significantly different across water types and it was 56.67% (95%CI 36.94-75.46%) in wastewater, 26.72% (thropogenic pollutions.Groundwater samples collected from irrigation, monitoring, and municipal supply wells near the Oxnard Oil Field were analyzed for chemical and isotopic tracers to evaluate if thermogenic gas or water from hydrocarbon-bearing formations have mixed with surrounding groundwater. New and historical data show no evidence of water from hydrocarbon-bearing formations in groundwater overlying the field. However, thermogenic gas mixed with microbial methane was detected in 5 wells at concentrations ranging from 0.011-9.1 mg/L. The presence of these gases at concentrations less then 10 mg/L do not indicate degraded water quality posing a known health risk. Analysis of carbon isotopes (δ13C-CH4) and hydrogen isotopes (δ2H-CH4) of methane and ratios of methane to heavier hydrocarbon gases were used to differentiate sources of methane between a) microbial, b) thermogenic or c) mixed sources. Results indic