https://www.selleckchem.com/products/Camptothecine.html We report on nanosecond-long, gate-dependent valley lifetimes of free charge carriers in monolayer WSe2, unambiguously identified by the combination of time-resolved Kerr rotation and electrical transport measurements. While the valley polarization increases when tuning the Fermi level into the conduction or valence band, there is a strong decrease of the respective valley lifetime consistent with both electron-phonon and spin-orbit scattering. The longest lifetimes are seen for spin-polarized bound excitons in the band gap region. We explain our findings via two distinct, Fermi-level-dependent scattering channels of optically excited, valley-polarized bright trions either via dark or bound states. By electrostatic gating we demonstrate that the transition-metal dichalcogenide WSe2 can be tuned to be either an ideal host for long-lived localized spin states or allow for nanosecond valley lifetimes of free charge carriers (>10 ns).In quantum matters hosting electron-electron correlation and spin-orbit coupling, spatial inhomogeneities, arising from competing ground states, can be essential for understanding exotic topological properties. A prominent example is Hall anomalies observed in SrRuO3 films, which were interpreted in terms of either magnetic skyrmion-induced topological Hall effect or inhomogeneous anomalous Hall effect (AHE). To clarify this ambiguity, we systematically investigated the evolution of AHE with controllable inhomogeneities in SrRuO3 film thickness (tSRO). By exploiting the step-flow growth of SrRuO3 films, we induced a microscopically ordered stripe pattern with one-unit-cell differences in tSRO. The associated spatial distribution of momentum-space Berry curvatures enables a two-channel AHE with hump-like Hall anomalies, which can be continuously engineered according to non-integer tSRO. We further microscopically characterized the stripe-like ferromagnetic domains and two-step magnetic