https://www.selleckchem.com/products/ws6.html Although both CTRP9 and PA treatment increased LC3 conversion, treatment with PA increased the expression level of p62 and decreased the fusion of autophagosomes and lysosomes, which represented decreased autophagic flux. However, pre-treatment with CTRP9 recovered the autophagic flux inhibited by PA. AMP-activated kinase (AMPK) activation was involved in LC3 conversion and decreased p62 levels induced by CTRP9. CTRP9 inhibits PA-induced endothelial senescence by recovering autophagy and autophagic flux through AMPK activation.With the changing face of healthcare, there is a demand for drug delivery systems that have increased efficacy and biocompatibility. Nanotechnology derived drug carrier systems were found to be ideal candidates to meet these demands. Among the vast number of nanosized delivery systems, biomimetic nanoparticles have been researched at length. These nanoparticles mimic cellular functions and are highly biocompatible. They are also able to avoid clearance by the reticuloendothelial system which increases the time spent by them in the systemic circulation. Additionally, their low immunogenicity and targeting ability increase their significance as drug carriers. Based on their core material we have summarized them as biomimetic inorganic nanoparticles, biomimetic polymeric nanoparticles, and biomimetic lipid nanoparticles. The core then may be coated using membranes derived from erythrocytes, cancer cells, leukocytes, stem cells, and other membranes to endow them with biomimetic properties. They can be used for personalized therapy and diagnosis of a large number of diseases, primarily cancer. This review summarizes the various therapeutic approaches using biomimetic nanoparticles along with their applications in the field of cancer imaging, nucleic acid therapy and theranostic properties. A brief overview about toxicity concerns related to these nanoconstructs has been added to provide knowledge about