https://www.selleckchem.com/products/gsk1070916.html The phosphatidylinositol 3-kinase (PI3K), which is composed of the p85 regulatory and p110 catalytic subunits, is known to be downstream of the receptor tyrosine kinase (RTK). Our recent findings revealed that p85β increases the protein level of AXL (an RTK) to activate p110, suggesting bidirectional regulation between PI3K and RTK.Interactions between disseminated cancer cells and the microenvironment in secondary organs are essential for the development of metastasis in most malignancies. Metastasis-initiating cells and their progeny can impose changes in the microenvironment leading to the formation of a metastatic niche that supports malignant growth at secondary sites. Our recent findings indicate that stress responses play a crucial role in generation of metastatic niches in breast cancer by modulating the extracellular matrix and promoting interactions with reactive fibroblasts.Alternative splicing (AS) analysis across the entire spectrum of human prostate cancer evolution reveals the unexpected findings that intron retention is a hallmark of stemness and tumor aggressiveness, and androgen receptor controls a splicing program distinct from its transcriptional regulation. Importantly, twisted activity of the spliceosome causing abnormal AS landscape represents a therapeutic vulnerability in aggressive prostate cancer.Renal medullary carcinoma (RMC) is a lethal disease that predominantly afflicts young individuals with sickle cell trait. Our recently reported molecular profiling of primary untreated RMC tissues elucidated distinct genomic and immune hallmarks of RMC, and identified MYC-induced replication stress as a targetable vulnerability for this disease.Different intrinsic and extrinsic stress pathways including endoplasmic reticulum (ER) stress converge on the phosphorylation of eukaryotic translation initiation factor 2A (EIF2A, best known as eIF2α), which characterizes the so-called "integrated stress